System Identification Toolbox™ 7
Getting Started Guide

Lennart Ljung

MATLAB
SIMULINK"

‘\The MathWorks™

Accelerating the pace of engineering and science

LN

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
System Identification Toolbox™ Getting Started Guide
© COPYRIGHT 1988-2008 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined

in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents
The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History

March 2007 First printing New for Version 7.0 (Release 2007a)
September 2007 Second printing Revised for Version 7.1 (Release 2007b)
March 2008 Third printing Revised for Version 7.2 (Release 2008a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

About the Developers

About the Developers

System Identification Toolbox™ software is developed in association with the
following leading researchers in the system identification field:

Lennart Ljung. Professor Lennart Ljung is with the Department of
Electrical Engineering at Linkoping University in Sweden. He is a recognized
leader in system identification and has published numerous papers and books
in this area.

Qinghua Zhang. Dr. Qinghua Zhang is a researcher at Institut National

de Recherche en Informatique et en Automatique (INRIA) and at Institut de
Recherche en Informatique et Systemes Aléatoires (IRISA), both in Rennes,
France. He conducts research in the areas of nonlinear system identification,
fault diagnosis, and signal processing with applications in the fields of energy,
automotive, and biomedical systems.

Peter Lindskog. Dr. Peter Lindskog is employed by NIRA Dynamics
AB, Sweden. He conducts research in the areas of system identification,
signal processing, and automatic control with a focus on vehicle industry
applications.

Anatoli Juditsky. Professor Anatoli Juditsky is with the Laboratoire Jean
Kuntzmann at the Université Joseph Fourier, Grenoble, France. He conducts
research in the areas of nonparametric statistics, system identification, and
stochastic optimization.

About the Developers

Product Overview

What You Can Accomplish Using This Toolbox 1-2

Types of Data You Can Model 1-3

How This Toolbox Supports Identifying Dynamic

Systems e 1-4
Accessing the Documentation and Demos 1-5
Accessing Documentation 1-5
Accessing Demos e 1-5
Related Products i, 1-7
Learn More0iiiiiiiiitttinnnnnnnnen.s 1-9

Using This Product

2

When to Use the GUI Versus the Command Line 2-2
Starting This Toolbox 2-3
Steps for Using This Toolbox 2-4

Tutorials to Help You Get Started 2-6

vi

Contents

Choosing Models to Estimate

Data-Driven Modeling Using System Identification

Toolbox™ Software 3-2
When to Identify Linear Versus Nonlinear Models 3-4
When to Identify Models from First Principles 3-6
When to Identify Black-Box Models 3-7

Tutorial - Identifying Linear Models Using the

4 |

GUI
About This Tutorial 4-3
ObJeCtIVeS v i ittt i e 4-3
Sample Data i 4-3
PreparingData 4-5
Loading Data into the MATLAB® Workspace 4-5
Opening the System Identification Tool GUI 4-5
Importing Data Arrays into the System Identification
o0l o e 4-6
Plotting and Preprocessing Data 4-11
Savingthe GUI Session 4-20
Identifying Models Using Default Settings 4-22
Why Identify Models Using Default Settings? 4-22
Using Quick Start to Identify Preliminary Models 4-23
Validating Preliminary Models 4-23
Types of Models Generated by Quick Start 4-27
RefiningModels 4-29
Strategy for Refining Models 4-29

Estimating Possible Model Orders 4-29

Identifying State-Space and ARMAX Models 4-34
Choosing the Best Model 4-38
Viewing Model Parameters 4-45
Viewing Model Parameter Values 4-45
Viewing Parameter Uncertainties 4-47
Exporting the Model to the MATLAB® Workspace 4-48
Exporting the Model to the LTI Viewer 4-50

Tutorial - Identifying Low-Order Transfer
Functions (Process Models) Using the GUI

5

About This Tutorial 5-3
ObJeCtiVeS .« .ottt e e 5-3
Sample Data 5-3

What Is a Continuous-Time Process Model? 5-5

PreparingData iiiiiienn... 5-6
Loading Data into the MATLAB® Workspace 5-6
Opening the System Identification Tool GUI 5-6
Importing Data Objects into the System Identification

o0l e e e e 5-7
Plotting and Preprocessing Data 5-9

Estimating Second-Order Transfer Functions (Process

Models) with ComplexPoles 5-13
Estimating a Second-Order Transfer Function Using

Default Settings i, 5-13

Tips for Specifying Known Parameters 5-18

Validatingthe Model 5-18

Refining the Model by Including a Noise Model 5-22

vii

viii

Estimating Models with Modified Settings
Comparing Models

Viewing Model Parameters
Viewing Model Parameter Values
Viewing Parameter Uncertainties

Exporting the Model to the MATLAB® Workspace

Using the System Identification Toolbox™ Product
with the Simulink® Software
Preparing InputData
Building the Simulink® Model
Configuring Blocks and Simulation Parameters
Running the Simulation

Tutorial - Identifying Linear Models Using the
Command Line

6

About This Tutorial
ObJeCtIVeS . v ittt i e
Sample Data

PreparingData i,
Loading Data into the MATLAB® Workspace
Plotting the Input/Output Data
Removing Equilibrium Values from the Data
Using Objects to Represent Data for System

Identification i ..
Creating iddata Objects,
PlottingtheData
Selecting a Subset ofthe Data

Estimating Step- and Frequency-Response Models
Why Estimate Step- and Frequnecy-Response Models? ...
Estimating the Frequency Response
Estimating the Step Response

Contents

6-3
6-3
6-3

6-5

Estimating Delays in the Multiple-Input System 6-22

Why Estimate Delays?, 6-22
Estimating Delays Using the ARX Model Structure 6-22
Estimating Delays Using Alternative Methods 6-23

Estimating Model Orders Using an ARX Model

Structure 6-25
Why Estimate Model Order? 6-25
Commands for Estimating the Model Order 6-25
Model Order for the First Input-Output Combination 6-27
Model Order for the Second Input-Output Combination .. 6-30

Estimating Continuous-Time Transfer Functions

(ProcessModels) 6-33
Specifying the Structure of the Process Model 6-33
Viewing the Model Structure and Parameter Values 6-34
Specifying Initial Guesses for Time Delays 6-35
Estimating Model Parameters Usingpem 6-36
Validating the Process Model 6-37
Refining the Process Model by Including a Noise Model .. 6-40
Estimating Black-Box Polynomial Models 6-44
Model Orders for Estimating Polynomial Models 6-44
Estimating a Linear ARX Model 6-45
Estimating a State-Space Model 6-48
Estimating a Box-Jenkins Model 6-51
Comparing Models i, 6-53
Simulating and Predicting Model Qutput 6-56
Simulating the Model Output 6-56
Predicting the Future Output 6-58

Tutorial - Identifying Nonlinear Black-Box
Models Using the GUI

7

About This Tutorial 7-2
ObJeCtives ..ttt e e e e 7-2
Sample Data it 7-2

ix

X

Contents

PreparingData 7-4
Loading Data into the MATLAB® Workspace 7-4
Creating iddata Objects, 7-4
Starting the System Identification Tool 7-6
Importing Data Objects into the System Identification

To0l . e e 7-7

Estimating Nonlinear ARX Models 7-9

Estimating a Nonlinear ARX Model with Default

SettINgS o e e e e e 7-9
Plotting Nonlinearity Cross-Sections for Nonlinear ARX

Modelsii e e e e 7-13
Changing the Nonlinear ARX Model Structure 7-16
Selecting a Subset of Regressors in the Nonlinear Block .. 7-18
Changing the Nonlinearity Estimator in a Nonlinear ARX

Model e e e 7-20
Selecting the Best Model 7-21

Estimating Hammerstein-Wiener Models 7-23

Estimating Hammerstein-Wiener Models with Default

1717 0 V== P 7-23
Plotting the Nonlinearities and Linear Transfer

Function, 7-27
Changing the Hammerstein-Wiener Model Structure 7-31
Changing the Nonlinearity Estimator in a

Hammerstein-Wiener Model 7-33
Selecting the Best Model 7-35

Index

Product Overview

What You Can Accomplish Using
This Toolbox (p. 1-2)

Types of Data You Can Model (p. 1-3)

How This Toolbox Supports
Identifying Dynamic Systems

(p. 1-4)

Accessing the Documentation and
Demos (p. 1-5)

Related Products (p. 1-7)

Learn More (p. 1-9)

Summary of the capabilities of the
System Identification Toolbox™
product

Data supported by the System
Identification Toolbox product

How the System Identification
Toolbox product fits into the stages
of identifying dynamic systems

Information about installing the
product, using the documentation,
and accessing demos

Summary of products that extend
the capabilities of the System
Identification Toolbox product

References for learning more about
modeling dynamic systems and
system identification theory

1 Product Overview

What You Can Accomplish Using This Toolbox

System Identification Toolbox™ software extends the MATLAB®
computational environment for estimating linear and nonlinear mathematical
models to fit measured data from dynamic systems. You might use the
resulting model to simulate the output of a system for a given input and
analyze the system response, predict future system outputs based on previous
inputs and outputs, or for control design.

System identification is especially useful for modeling systems that you
cannot easily represent in terms of first principles. In this case, you use the
System Identification Toolbox software to perform black-box modeling, where
the measured data determines the model structure. Examples of complex
dynamic systems requiring black-box models include engine subsystems, flight
dynamics systems, thermofluid processes, and electromechanical systems.

You can also use the System Identification Toolbox functions to compute the
coefficients of ordinary differential and difference equations for systems
modeled from first principles. Such models are called grey-box models.

For real-time applications in adaptive control, adaptive filtering, or adaptive
prediction, you can use this product to perform recursive parameter
estimation.

You can validate models directly after each estimation to help you select the
best dynamic model for your system.

For an overview of using the System Identification Toolbox software, see
“Steps for Using This Toolbox” on page 2-4.

Types of Data You Can Model

Types of Data You Can Model

You can estimate linear models from both time- and frequency-domain data
with single or multiple inputs and outputs. Time-domain data can be either
real or complex. For nonlinear models, System Identification Toolbox™
software supports only time-domain data.

Time-domain data is one or more input variables u(z) and one or more output
variables y(¢), sampled as a function of time. A special case of time-domain
data is time-series data, which is one or more outputs y(¢) and no measured
input.

Frequency-domain data is the Fourier transform of the input and output
time-domain signals. Frequency-response data, also called frequency-function
data, represents complex frequency-response values for a linear system
characterized by its transfer function G.

You can measure frequency-response data values directly using a spectrum
analyzer, for example. Often, frequency-domain and frequency-response data
are both referenced as frequency-domain data for the sake of brevity.

1 Product Overview

How This Toolbox Supports Identifying Dynamic Systems
The general system identification process might include the following stages:

1 Experimental design and data acquisition

2 Data analysis and preprocessing, including plotting the data, removing
offsets and linear trends, filtering, resampling, and selecting regions of
interest

3 Estimation and validation of models

4 Model analysis and transformation, such as linear analysis, reducing
model order, and converting between discrete-time and continuous-time
representations

5 Model usage for intended applications, such as simulation or prediction
of output values or control design

The System Identification Toolbox™ product supports all of these stages
except data acquisition. This toolbox provides some support for experimental
design by enabling you to generate input signals with different properties.
You can also model data to validate and refine your experimental design.

Accessing the Documentation and Demos

Accessing the Documentation and Demos

In this section...

“Accessing Documentation” on page 1-5

“Accessing Demos” on page 1-5

Accessing Documentation

The MathWorks™ technical documentation is available online from the Help
menu on the MATLAB® desktop.

The System Identification Toolbox™ documentation contains the following
components:

® Getting Started Guide — Provides essential information for mapping
your problem to the capabilities of the System Identification Toolbox
product. Step-by-step tutorials walk you through the most common system
identification tasks.

¢ User’s Guide — Describes tasks for using the System Identification Toolbox
software.

¢ Reference — Describes the System Identification Toolbox commands.

® Release Notes — Describes important changes in the current product
version and compatibility considerations.

New Users. The Getting Started Guide helps you begin using this toolbox
quickly. After a brief introduction to the types of models you can estimate,
follow the steps in the tutorials to estimate models in the System Identification
Tool graphical user interface (GUI) or the MATLAB Command Window.

Experienced Users. Search or browse the documentation for information
about specific tasks.

Accessing Demos

The System Identification Toolbox product provides demo files that show
you how to estimate models for dynamic systems from measured data. The
available demos include both case studies and tutorials.

1 Product Overview

To access demos in the Help browser, type the following command in the
MATLAB Command Window:

demo

In the Demos pane, select Toolboxes > System Identification to open
the list of available demos.

1-6

Related Products

Related Products

The following table summarizes MathWorks™ products that extend and
complement the System Identification Toolbox™ software. For current
information about these and other MathWorks products, point your Web

browser to:

www.mathworks.com

Product

Description

Control System Toolbox™

Provides extensive tools to analyze
plant models created in the System
Identification Toolbox software and
to tune control systems based on
these plant models.

Model Predictive Control Toolbox™

Uses the linear plant models
created in the System Identification
Toolbox software for predicting plant
behavior that is optimized by the
model-predictive controller.

Neural Network Toolbox™

Provides flexible neural-network
structures for estimating nonlinear
models using the System
Identification Toolbox software.

Optimization Toolbox™

When this toolbox is installed,
you have the option of using the
1sgnonlin optimization algorithm
for nonlinear identification.

Robust Control Toolbox™

Provides tools to design
multiple-input and multiple-output
(MIMO) control systems based on
plant models created in the System
Identification Toolbox software.
Helps you assess robustness based
on confidence bounds for the
identified plant model.

file:///B:/matlab/doc/src/toolbox/mpc/mpc_product_page.html
file:///B:/matlab/doc/src/toolbox/nnet/nnet_product_page.html
file:///B:/matlab/doc/src/toolbox/robust/robust_product_page.html

1 Product Overview

Product

Description

Signal Processing Toolbox™

Provides additional options for:

e Filtering
(The System Identification
Toolbox software provides only
the fifth-order Butterworth filter.)

® Spectral analysis

After using the advanced data
processing capabilities of the Signal
Processing Toolbox software, you
can import the data into the System
Identification Toolbox software for
modeling.

Simulink®

Provides System Identification
blocks for simulating the models
you identified using the System
Identification Toolbox software. Also
provides blocks for model estimation.

Learn More

Learn More

The goal of the System Identification Toolbox™ documentation is to provide
you with the necessary information to use this product. Additional resources
are available to help you learn more about specific aspects of system
identification theory and applications.

The following book describes methods for system identification and physical
modeling:
Ljung, L., and T. Glad. Modeling of Dynamic Systems. PTR Prentice Hall,
Upper Saddle River, NJ, 1994.

These books provide detailed information about system identification theory
and algorithms:

® Ljung, L. System Identification: Theory for the User. Second edition. PTR
Prentice Hall, Upper Saddle River, NdJ, 1999.
e Soderstrom, T., and P. Stoica. System Identification. Prentice Hall

International, London, 1989.

For information about working with frequency-domain data, see the following
article:

Pintelon, R., and J. Schoukens. System Identification. A Frequency Domain
Approach. TEEE Press, New York, 2001.

For more information about systems and signals, see the following book:

Oppenheim, J., and Willsky, A.S. Signals and Systems. PTR Prentice Hall,
Upper Saddle River, NJ, 1985.

The following textbook describes numerical techniques for parameter
estimation using criterion minimization:

Dennis, J.E., Jr., and R.B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. PTR Prentice Hall, Upper Saddle
River, NJ, 1983.

1-9

1 Product Overview

1-10

Using This Product

When to Use the GUI Versus the
Command Line (p. 2-2)

Starting This Toolbox (p. 2-3)

Steps for Using This Toolbox (p. 2-4)

Tutorials to Help You Get Started
(p. 2-6)

When to use the GUI versus the
System Identification Toolbox™
commands

Opening the System Identification
Tool GUI and getting more
information about command-line
syntax

Summary of typical tasks in the
system identification workflow

Summary of tutorials to help new
users get started quickly

2 Using This Product

When to Use the GUI Versus the Command Line

New users should start by using the System Identification Tool GUI to become
familiar with the product.

You can work either in the GUI or at the command line to preprocess data,
and estimate, validate, and compare models.

The following operations are available only at the command line:

¢ Generating input and output data (see idinput).

e Estimating coefficients of linear and nonlinear ordinary differential or
difference equations (grey-box models).

¢ Using recursive online estimation methods. See topics about estimating
linear models recursively in the System Identification Toolbox User’s Guide.

¢ Converting between continuous-time and discrete-time models (see c2d
and d2c reference pages).

¢ Converting models to Control System Toolbox™ LTI objects (see the ss, tf,
and zpk reference pages).

Note Conversions to LTI objects require the Control System Toolbox
software.

Tip To learn more about estimating and validating models at the command
line, see Chapter 6, “T'utorial — Identifying Linear Models Using the Command
Line”.

Starting This Toolbox

Starting This Toolbox

After installing the System Identification Toolbox™ product, you can start the
System Identification Tool GUI or work at the command line.

For information about whether to use the GUI or the command line, see
“When to Use the GUI Versus the Command Line” on page 2-2.

To open the System Identification Tool GUI:

¢ Select Start > Toolboxes > System Identification from the MATLAB®
Command Window.

Alternatively, you can open the System Identification Tool GUI by typing the
following command in the MATLAB Command Window:

ident

To work at the command line, type the commands directly in the MATLAB
Command Window. For more information about supported commands, see
the reference pages.

2-3

2 Using This Product

Steps for Using This Toolbox

System identification is an iterative process, where you identify models with
different structures from data and compare model performance. Ultimately,
you choose the simplest model that best describes the dynamics of your
system.

Because this toolbox lets you estimate different model structures quickly, you
should try as many different structures as possible to see which one produces
the best results.

A system identification workflow might include the following tasks:

1 Prepare data for system identification by:

Importing data into the MATLAB® workspace.

Importing data into the System Identification Tool GUI or creating an
iddata or idfrd object in the MATLAB Command Window.

Plotting data to examine both time- and frequency-domain behavior.

To analyze the data for the presence of constant offsets and trends,
delay, feedback, and signal excitation levels, you can also use the advice
command.

Preprocessing data by removing offsets and linear trends, interpolating
missing values, filtering to emphasize a specific frequency range, or
resampling (interpolating or decimating) using a different time interval.

2 Identify linear or nonlinear models:

Frequency-response models
Impulse-response models

Low-order transfer functions (process models)
Input-output polynomial models

State-space models

Nonlinear black-box models

Ordinary difference or differential equations (grey-box models)

Steps for Using This Toolbox

3 Validate models.

When you do not achieve a satisfactory model, try a different model
structure and order or try another identification algorithm. In some cases,
you can improve results by including a noise model.

You might need to preprocess your data before doing further estimation.
For example, if there is too much high-frequency noise in your data, you
might need to filter or decimate (resample) the data before modeling.

4 Simulate or predict model output.

5 Design a controller for the estimated plant using other MathWorks™
products.

You can import an estimated linear model into the Control System
Toolbox™, Model Predictive Control Toolbox™, Robust Control Toolbox,
or Simulink® products for controller design. For more information about
linearizing a nonlinear plant, see the 1inapp and linearize reference

pages.

2 Using This Product

2-6

Tutorials to Help You Get Started

You can use the following tutorials to help you quickly get started with the
System Identification Toolbox™ software.

Tutorial

Description

Chapter 4, “Tutorial — Identifying
Linear Models Using the GUT”

You learn how to identify

and compare different linear
black-box models from
single-input/single-output (SISO)
data using the System Identification
Tool GUI.

Chapter 5, “Tutorial — Identifying
Low-Order Transfer Functions
(Process Models) Using the GUI”

You learn how to estimate

the parameters of low-order,
continuous-time transfer functions
from single-input/single-output
(SISO) data using the System
Identification Tool GUI.

Chapter 6, “Tutorial — Identifying
Linear Models Using the Command
Line”

You learn how to identify

different linear models from
multiple-input/single-output (MISO)
data using System Identification
Toolbox commands.

Chapter 7, “Tutorial — Identifying
Nonlinear Black-Box Models Using
the GUI”

You learn how to identify
nonlinear black-box models from
single-input/single-output (SISO)
data using the System Identification
Tool GUI.

Choosing Models to

Estimate

Data-Driven Modeling Using System
Identification Toolbox™ Software

(p. 3-2)

When to Identify Linear Versus
Nonlinear Models (p. 3-4)

When to Identify Models from First
Principles (p. 3-6)

When to Identify Black-Box Models
(p. 3-7)

Definition of data-driven modeling
and the general structure of a
dynamic model

Criteria for choosing linear or
nonlinear models

Criteria for choosing when to use an
ODE to represent your system

Criteria for choosing black-box
models for systems that you cannot
easily represent in terms of known
physical laws

3 Choosing Models to Estimate

Data-Driven Modeling Using System Identification
Toolbox™ Software

Data-driven modeling means that you are fitting models to measured data.

e(t)

|

u(t) y(t)

—> —>

Models describe the relationship between one or more measured input signals,
u(t), and one or more measured output signals, y(¢). The System Identification
Toolbox™ software supports modeling input and output signals measured in
either the time or frequency domain.

In addition, this toolbox supports modeling additional inputs that affect the
system output and that you cannot measure or control. Such unmeasured
inputs are called disturbances or noise, e(t). For example, if the system is
an airplane, its inputs might be the positions of various control surfaces,
such as ailerons and elevators. The system outputs might be the airplane
orientation, velocity, and position. The noise might be turbulence and wind
gusts that affect the outputs.

You use System Identification Toolbox software to identify models that are
special cases of the following general mathematical description of dynamic

systems:

(@) = g(u,0) +v(?)

The output y(z) of a system is determined by g, which might be a function of all
previous inputs u(s) (s <t) and system parameters 0. v(?) is the output noise.

For nonlinear models, g can take a variety of forms.

Data-Driven Modeling Using System Identification Toolbox™ Software

For linear models, the general symbolic model description is given by:

y=Gu+ He

G is an operator that describes the system dynamics from the input to the
output. G is often called a transfer function between u and y. H is an operator
that describes the properties of the additive output disturbance and is called a
disturbance model, or noise model. The actual disturbance contribution to the
output, He, has real significance and contains all the known and unknown
influences on the measured y not included in the input u. Therefore, if you
repeat and experiment with the same input, He explains why the output
signal is different.

The source of the noise, e, need not have a physical significance. In the case
of an airplane, it is sufficient to estimate the noise in a black-box manner as
arising from a white noise source via a transfer function H. Thus, you do not
need to know how the wind gusts and turbulence are generated physically
and all that matters are the characteristics of He, such as the frequency
content of the spectrum of He.

If you know that your measured data includes noise, you can choose a model
structure that computes H to produce a more accurate dynamic model. For
more information about choosing to model noise in linear black-box models,
see “When to Identify Black-Box Models” on page 3-7.

3 Choosing Models to Estimate

When to Identify Linear Versus Nonlinear Models

You can identify both linear and nonlinear models using System Identification
Toolbox™ software. In practice, all systems are nonlinear and the output is a
nonlinear function of the input variables. However, a linear model is often
sufficient to accurately describe the system dynamics.

Follow these guidelines to choose between using nonlinear and linear
black-box models:

® When you have physical insight that the system is nonlinear, try
transforming your input and output variables such that the relationship
between the transformed variables is linear.

For example, you might be dealing with a system that has current and
voltage as inputs to an immersion heater, and the temperature of the heated
liquid as an output. In this case, the output depends on the inputs via the
power of the heater, which is equal to the product of current and voltage.
Instead of fitting a nonlinear model to two-input and one-output data, you
can create a new input variable by taking the product of current and voltage
and then fitting a linear model to the single-input/single-output data.

® Plot the response of the system to a specific input. If you notice that the
responses are different depending on the input level or input sign, use a
nonlinear model. For example, you might see that the output response to
an input step up is much faster than the response to a step down.

® Try identifying several linear models of varying complexity. If the model
output does not adequately reproduce the measured output, you might
need to use a nonlinear model. Noisy data might also cause a model to
fail reproducing measured output.

For a grey-box model, its linear or nonlinear structure is set by its differential
or difference equations (ODEs). For more information about choosing this type
of model, see “When to Identify Models from First Principles” on page 3-6.

For a black-box model, you can choose whether to estimate linear or nonlinear
models. Linear approximations are very useful because they are simple and
provide good results in many situations. Therefore, always estimate linear
models first and see how well these models represent the dynamics. For

When to Identify Linear Versus Nonlinear Models

more information about choosing this type of model, see “When to Identify
Black-Box Models” on page 3-7

Note For nonlinear black-box models, you can only estimate discrete-time
models using time-domain data.

3 Choosing Models to Estimate

When to Identify Models from First Principles

A grey-box model has a known mathematical structure and unknown
parameters. Use this approach if you understand the physics of your system
and can represent the system dynamics using ordinary differential or
difference equations (ODEs).

You capture the ODE and the parameters you want to estimate in an M-file or
MEX-file, and use the System Identification Toolbox™ product to estimate
the model parameters. For example, to estimate the parameters of a transfer
function that you defined, you must first represent the trasfter function in
state-space form.

Grey-box modeling has the following advantages over black-box modeling:
* You can impose known constraints on model characteristics, such as model
parameters and noise variance.

® There are potentially fewer parameters to estimate.

® You can specify couplings between parameters when defining the model
structure.

¢ In the nonlinear case, you can specify the dynamic equations explicitly.

Grey-box modeling is preferred. However, grey-box modeling requires that
you know the relationship between the system variables and the parameters,
which can be time consuming. For an alternative to grey-box modeling, see
“When to Identify Black-Box Models” on page 3-7.

For information about estimating linear and nonlinear grey-box models, see
the System Identification Toolbox User’s Guide.

When to Identify Black-Box Models

When to Identify Black-Box Models

System identification is especially useful for modeling systems that you
cannot easily represent in terms of first principles or known physical laws.
The parameters of a black-box model might not have a physical interpretation.

Black-box models can be linear or nonlinear. You can identify several
black-box models that have different orders and choose the model that has
the best performance. Black-box models can also be continuous-time or
discrete-time models.

Black-box modeling has the following advantages:

® You do not need to know the structure and order of your model to get
started quickly.

® You can estimate many model structures and compare them to choose the
best one.

System Identification Toolbox™ software provides linear black-box model
structure that let you model noise explicitly. For example, you can model noise
for a low-order transfer function or a state-space model. Some input-output
polynomial models, such as the ARMAX or Box-Jenkins (BJ) structure,
provide additional parameters to model noise and decouple the dynamics
from the noise.

Note Nonlinear black-box models do not support parametric noise modeling.

You might choose a linear model structure with a noise model in the following
situations:

® You are specifically interested in a noise model, such as when developing
noise-cancellation and noise-attenuation technologies, or for disturbance
rejection in control design applications.

* You want to use the noise characteristics to improve the estimation of the
dynamic model by emphasizing the frequencies that are least affected by
noise during the estimation.

3 Choosing Models to Estimate

Tutorial — Identifying
Linear Models Using the
GUI

About This Tutorial (p. 4-3) Overview of the tutorial for
estimating linear models from
single-input/single-output (SISO)
data

Preparing Data (p. 4-5) How to load the sample MAT-file
into the MATLAB® workspace, open
the System Identification Tool GUI,
import data into the GUI from the
MATLAB workspace, and plot and
preprocess the data

Saving the GUI Session (p. 4-20) How to save a System Identification
Tool session, including imported
data sets and generated models

Identifying Models Using Default How to identify models using Quick

Settings (p. 4-22) Start to assess the complexity of the
data and the performance of several
polynomial and state-space models

Refining Models (p. 4-29) How to get refine the model accuracy

Viewing Model Parameters (p. 4-45) How to view estimated model
parameters and the history of
operations on the model and the
corresponding data

4 1iiorial - Identifying Linear Models Using the GUI

4-2

Exporting the Model to the
MATLAB® Workspace (p. 4-48)

Exporting the Model to the LTI
Viewer (p. 4-50)

How to make the model available
to operations in the MATLAB
Command Window for further
processing with this toolbox or other
MathWorks™ products

How to export models to the LTI
Viewer, which is available if you
installed the Control System
Toolbox™ product

About This Tutorial

About This Tutorial

In this section...

“Objectives” on page 4-3

“Sample Data” on page 4-3

Obijectives

Estimate and validate linear models from single-input/single-output (SISO)
data to find the one that best represents your system dynamics.

After completing this tutorial, you will be able to accomplish the following
tasks using the System Identification Tool GUI:

¢ Import data arrays from the MATLAB® workspace into the GUI.
Plot the data.

¢ Preprocess data by removing offsets from the input and output signals.

Estimate, validate, and compare linear models.

Export models to the MATLAB workspace.

This tutorial is based on the example in System Identification: Theory for the
User, Second Edition, by Lennart Ljung, Prentice Hall PTR, 1999.

Sample Data

The sample data is the MAT-file dryer2.mat, which contains
single-input/single-output (SISO) time-domain data from Feedback Process
Trainer PT326. The input and output signals each contain 1000 data samples.

This system heats the air at the inlet using a mesh of resistor wire, much like
a hair dryer. The input is the power supplied to the resistor wires, and the
output is the air temperature at the outlet.

4 1iiorial - Identifying Linear Models Using the GUI

Note The tutorial uses time-domain data to demonstrate how you can
estimate linear models. The same workflow also applies to frequency-domain
data.

Preparing Data

Preparing Data

In this section...
“Loading Data into the MATLAB® Workspace” on page 4-5
“Opening the System Identification Tool GUI” on page 4-5

“Importing Data Arrays into the System Identification Tool” on page 4-6

“Plotting and Preprocessing Data” on page 4-11

Loading Data into the MATLAB® Workspace

Load sample data in dryer2.mat by typing the following command in the
MATLAB® Command Window:

load dryer2
This command loads the data into the MATLAB workspace as two column

vectors, u2 and y2, respectively. The variable u2 is the input data and y2 is
the output data.

Opening the System Identification Tool GUI

To open the System Identification Tool GUI, type the following command
in the MATLAB Command Window:

ident

4-5

4 1iiorial - Identifying Linear Models Using the GUI

The default session name, Untitled, appears in the title bar.

<} System Identification Tool - Untitled : []
File Options Window Help
Ilmport data - l Ilmpor‘t models - l
* Operations *
|<-- Preprocess - l
=
‘Wiorking Data
I Estimate --= - l
Data Wiews Model Yiews
To To
I~ Time: plat \Wiorkspace | |LTIViewwer | [T hode! outpot [~ Transient resp | L EE
[~ Data spectrs [~ Macdel resids [~ Freguency tesp [T Hamm-niener
[~ Frecuency. function [~ Zetos and poles
Ezxit I~ Moize spectrum
==t walidation Dats
Status line is here.

Importing Data Arrays into the System Identification
Tool

You can import the single-input/single-output (SISO) data from a sample data
file dryer2.mat into the GUI from the MATLAB workspace.

You must have already opened the System Identification Tool GUI, as
described in “Opening the System Identification Tool GUI” on page 4-5.

Note The input and output signals need not have the same number of data
samples.

Preparing Data

1 In the System Identification Tool GUI, select Import data > Time
domain data. This action opens the Import Data dialog box.

Inpott data H

Impart data

Titne: dotmain data. ..

Freq. domain data...
Data ohject...
Example...

2 Specify the following options:

Input — Enter u2 as the name of the input variable.
Output — Enter y2 as the name of the output variable.

Data name — Change the default name to data. This name labels the
data in the System Identification Tool GUI after the import operation is
completed.

Starting time — Enter 0 as the starting time. This value designates
the starting value of the time axis on time plots.

Sampling interval — Enter 0.08 as the time between successive
samples in seconds. This value is the actual sampling interval in the
experiment.

4-7

4 1iiorial - Identifying Linear Models Using the GUI

The Import Data dialog box now resembles the following figure.

_inix)

Data Format for Signals

ITime-I]umain Signals j

Work=space Variable

Inpt: "'2
Outpt: hz

Data Information

Dats name: Eaia
Starting time E
Sampling interval: E_DB

Imppart I Reset I

Cloze I Help I

Preparing Data

3 In the Data Information area, click More to expand the dialog box. Enter
the settings shown in the following figure.

J Import Data

Data Format for Signals

Time-Domain Signals j

Input Properties
Irter=ample: 0k

Period:

Workspace VWariable

Ingait; |J2
Outp: b,z

Channel Hame=s

Iripost: luower

Cutpu: temperature

Data Information

Data name: Eata
Starting time E

Sampling interwval:

Phys=ical Units of Variables

Ingt: IW
Hotes

4 1iiorial - Identifying Linear Models Using the GUI

4-10

Input Properties

InterSample — Enter zoh (zero-order hold) to maintain a
piecewise-constant input signal between samples. This setting specifies
the behavior of the input signals between samples when you transform
the resulting models between discrete-time and continuous-time
representations.

Period — Inf specifies a nonperiodic input.

Note If your data is periodic, always include a whole number of periods
for model estimation. For a periodic input, type the period of the input
signal in your experiment.

Channel Names

Input — Enter power.

Tip Naming channels helps you to identify data in plots. For
multivariable input and output signals, you can specify the names of
individual Input and Output channels, separated by commas.

Output — Enter temperature.

Physical Units of Variables

Input — Enter W for power units.

Tip When you have multiple inputs and outputs, enter a
comma-separated list of Input and Output units corresponding to each
channel.

Output — Enter “oC for temperature units.

Notes — Enter comments about the experiment or the data. For
example, you might enter the experiment name, date, and a description of

Preparing Data

experimental conditions. When you estimate models from this data, these
models inherit your data notes.

4 Click Import to add the icon named data to the System Identification
Tool GUI.

Ilmpu:urt data j
‘l Ciperations
?W |~=c-- Preprocess j
data

t
..—"’W

Warking Data

1

Estimate --= j

5 Click Close to close the Import Data dialog box.

Plotting and Preprocessing Data

In this portion of the tutorial, you examine the data and prepare it for system
identification. You learn how to:

® Plot the data.
¢ Subtract the mean values of the input and the output to remove offsets.

¢ Split the data into two parts. You use one part of the data for model
estimation, and the other part of the data for model validation.

The reason you subtract the mean values from each signal is because,
typically, you build linear models that describe the responses for deviations
from a physical equilibrium. With steady-state data, it is reasonable

to assume that the starting levels of the signals correspond to such an
equilibrium. Thus, you can seek models around zero without modeling the
absolute equilibrium levels in physical units.

4-11

4 1iiorial - Identifying Linear Models Using the GUI

4-12

You must have already imported data into the System Identification Tool, as
described in “Importing Data Arrays into the System Identification Tool”
on page 4-6.

Tip For information about other types of preprocessing, such as resampling
and filtering the data, see the topics about plotting and preprocessing data
in the System Identification Toolbox User’s Guide.

1 In the System Identification Tool GUI, select the Time plot check box to
open the Time Plot.

=13l x|

=} Time Plot: power- =tempera :
File Options Stwle Channel Help

Input and output signals

termperature

pawer

Time

The top axes show the output data (temperature), and the bottom axes
show the input data (power). Both the input and the output data have
nonzero mean values.

Preparing Data

2 In the System Identification Tool GUI, select <-Preprocess > Remove

means to subtract the mean input value from the input data and the mean
output value from the output data.

.} System Identification Tool - Untitled

; =0l
File Options Window Help
Ilmport data - l Ilmpor‘t models - l
* Operations *
,V\ =-- Preprocess - l
data

=-- Preprocess
Select channels..
Select experiments...
Merge experiments...

Select range..
e
Remove trends k
Fitter...
Data Views Transform data... Macel Yiewes
Gick start . .
i Il autput Transient res Monlinear AREK

[Time plat r i r I |

[Data spectra [~ Macdel resids [~ Freguency tesp [T Hamm-niener

[Frequency function W [~ Zetos and poles

- data i
Ezxit I~ Moize spectrum
= Yalilation Data

Click acknowledged. Mo action invoked.

4-13

4 1iiorial - Identifying Linear Models Using the GUI

This action adds a new data set to the System Identification Tool GUI with
the default name datad (the suffix d means detrend), and updates the Time
Plot window to display both the original and the detrended data.

<) Time Plok: puwer—::=—ten1perél:__|_.'fj = |EI|E|
File Options Stwle Channel Help

Input and output signals

ternperature

power

Time

The detrended data has a zero mean value.

3 In the System Identification Tool GUI, drag the datad data set to the
Working Data rectangle. This action specifies the detrended data to be
used for estimating models.

4 Select <-Preprocess > Select range to open the Select Range window.

In this window, you can split the data into two parts and specify the first
part for model estimation, and the second part for model validation, as
described in the following steps.

4-14

Preparing Data

5 In the Select Range window, change the Samples field to select the first
500 samples, as follows:

1 500

) select Range: power-=temperature H |EI|5|

File Options Style Channel Help

Input and output signals

2
@ Time span:
‘E E 39.92
[1:] B
= 0O
% Samples:
o
oy 00
Dats name:
2
Fs’timate
g 1] Insert |
(]
o
Revert |
-2 Cloze |
1] 20 40 (a1} a0

Time

Prezs Insert to accept marked data set.

Tip You can also select data samples using the mouse by clicking and
dragging a rectangular region on the plot. If you select samples on the
input-channel axes, the corresponding region is also selected on the
output-channel axes.

4-15

4 1iiorial - Identifying Linear Models Using the GUI

6 In the Data name field, type the name estimate, and click Insert. This
action adds a new data set to the System Identification Tool GUI to be
used for model estimation.

7 In the Select Range window, change the Samples field to select the last
500 samples, as follows:

501 1000

) Select Range: power->temperakure Al |EI|5|

File Options Style Channel Help

Input and autput signals

Time =span:

0 FD 79.92

Samples:

-7 . . . EEH 1000

Dats name:

Falidaie|

In=ert |
Revert |
0 20 40 &0 @ . Coss |

Time

ternperature

power

Mevwy data zets may now be chasen.

4-16

Preparing Data

8 In the Data name field, type the name validate, and click Insert. This
action adds a new data set to the System Identification Tool GUI to be
used for model validation.

9 Drag and drop estimate to the Working Data rectangle, and drag and
drop validate to the Validation Data rectangle so that the System
Identification Tool GUI resembles the following figure.

) System Identification Tool - Untitled - 0] x|
File Options Window Help
Ilmport data - l Ilmpor‘t models - l
l Operations ;
,V\ ,V\ |<-- Preprocess - l
data datad 1‘
AN v
estimate validate iy
estimate
‘Wiorking Data
I Estimate --= - l
Data Wiews Model Yiews
To To
Workspace || LTI Viewer [[T fodel output [~ Transient resp [~ Monfinesr AR
[Data spectra [~ Macdel resids [~ Freguency tesp [T Hamm-niener
|~ Frequency function w [~ | Zeros and poles
Exit o validate [~ hoise spectrum
ras “alidation Data
Click on data/model icons to plotiunplot curves.

Tip If you have multiple data sets available from different experiments,
you can use one data set for estimation and another data set for validation.
Thus, you need not split the data set you originally imported.

4-17

4 1iiorial - Identifying Linear Models Using the GUI

10 To get information about a data set, right-click its icon. For example,
right-click the estimate data set to open the Data/model Info dialog box.

)} Data/model Info: estimate . - |EI|5|

Data name: Iestimate

Calat: l1 |D|D]

Time domain data set with 500 samples. ;I
Sampling interval; 0.05
Ot s Unit (if specified)
temperature o
(Inputs Unit (if specified)
pover Wy

Diary And Motes

W Import data
datad = dtrendidata,0)
estimate = datad([1:500])

Prezent Cloze Help |

4-18

Preparing Data

In the Data/model Info dialog box, you can perform the following actions:
¢ Change the name of the data set in the Data name field.

¢ Change the color of the data icon by changing the RGB values (relative
amounts of red, green, and blue). Each value is between 0 and 1. For
example, [1,0,0] indicates that only red is present, and no green and
blue are mixed into the overall color.

¢ In the noneditable area, view the total number of samples, the sampling
interval, and the output and input channel names and units.

¢ In the editable Diary And Notes area, view or edit the actions you
performed on this data set. The actions are translated into commands
equivalent to your GUI operations. For example, the estimate data
set is a result of importing the data, detrending the mean values, and
selecting the first 500 samples of the data:

load dryer2

% Import data

datad = detrend(data,0)
estimate = datad([1:500])

For more information about these and other toolbox commands, see the
reference page for each command.

Tip As an alternative preprocessing shortcut, you can select
Preprocess > Quick start from the System Identification Tool GUI to
simultaneously perform all of the data preprocessing steps in this tutorial.

For information about other types of preprocessing, such as resampling and
filtering data, see the System Identification Toolbox User’s Guide.

4-19

4 1iiorial - Identifying Linear Models Using the GUI

4-20

Saving the GUI Session

After you preprocess the data, as described in “Plotting and Preprocessing
Data” on page 4-11, you may delete any data sets in the window that you do
not need for estimation and validation, and save your session. You can open
this session later and use it as a starting point for model estimation and
validation without repeating these preparatory steps.

In the following procedure, you delete the original data set data and
the detrended data set datad, rearrange the data icons in the System
Identification Tool GUI, and save the session.

1 In the System Identification Tool GUI, drag and drop the data data set
into the Trash.

2 Drag and drop the datad data set into the Trash.

Note Moving items to the Trash does not delete them. To permanently
delete items, select Options > Empty trash in the System Identification
Tool GUI.

The following figure shows the System Identification Tool GUI after moving
the items to the Trash.

Impart data j
", Operations

Iq’-- Preprocess j

N o/ L
?esti\m{: validate ;’W

estimate
Warking Data

i

Estimate --= |

Saving the GUI Session

3 Drag and drop the estimate and validate data sets to fill the empty
rectangles, as shown in the following figure.

IImpu:urt data j
; Operations

M w |~:-- Preprocess j

eztimate validate ‘I‘

-~ \K’/\xv
estimate
Wiorking Data

i

Estimate --= |

4 Select File > Save session as to open the Save Session dialog box, and
browse to the directory where you want to save the session file.

5 In the File name field, type the name of the session prep_data, and click
Save. The resulting file has a .sid extension.

Tip To open a saved session when starting the System Identification Tool,
type the session name as an argument. For example:

ident('prep_data')

For more information about managing sessions, see the topics on working
with the System Identification Tool GUI in the System Identification Toolbox
User’s Guide.

4-21

4 1iiorial - Identifying Linear Models Using the GUI

Identifying Models Using Default Settings

In this section...

“Why Identify Models Using Default Settings?” on page 4-22

“Using Quick Start to Identify Preliminary Models” on page 4-23
“Validating Preliminary Models” on page 4-23

“Types of Models Generated by Quick Start” on page 4-27

Why Identify Models Using Default Settings?

After preparing the data for estimation, as described in “Plotting and
Preprocessing Data” on page 4-11, you can use the Quick Start feature of
the System Identification Toolbox™ product to identify and compare several
model structures. You can use these models to assess whether linear modeling
is sufficient. These models also help you gain insight into the possible order
and delays in the system.

4-22

Identifying Models Using Default Settings

Using Quick Start to Identify Preliminary Models

To identify preliminary models, select Estimate > Quick start in the System
Identification Tool GUI.

This action generates plots of impulse response, frequency-response, and the
output of state-space and polynomial models. For more information about
these plots, see “Validating Preliminary Models” on page 4-23.

For a description of the generated models, see “Types of Models Generated by
Quick Start” on page 4-27.

<) System Identification Tool - prelim_est : - |EI|1|
File Options Window Help
Ilmport data - l Ilmpor‘t models - l
l Operations ;
,V\ |<-- Preprocess - l !\— J
estimate validate 1‘ imp spad arxgs nds3d
A
= estimate
‘Wiorking Data
I Estimate --= - l
Data Wiews Model Yiews
To To
[~ Time plat \Wiorkspace (|LTIViewer | [Model autput [Transiertresp [Monlinesr ARK
[Data spectra I Model resids ¥ Fregquency resp [Hamm-iener
|~ Frequency function [~ Zeros and poles
Exit - validate [Moise spectrum
ras “alidation Data
Emptly icon. Mo action invoked.

Validating Preliminary Models

Estimating models using Quick Start generates the following three plots
of the preliminary models you created in “Using Quick Start to Identify
Preliminary Models” on page 4-23:

® Step-response plot

¢ Frequency-response plot

® Model-output plot

4-23

4 1iiorial - Identifying Linear Models Using the GUI

You can analyze these plots to determine the quality of the model. Close the
model plots after you examine them.

Step-Response Plot

The following step-response plot shows agreement for the different model
structures, which means that all of these structures have similar dynamics.

Tip If you closed the plot window, select the Transient resp check box
to reopen this window.

<} Transient Response: puwei‘-‘:ﬁg:_'_ p = |EI|5|
File Options Stwvle Channel Help
Step Response
1 T r T T
0.a 4
0.6 4
0.4 / 4
i
0.2 },‘ 4
al]
-0z A . L L
-1 a 1 2 3 4
Time
Ma transient responze far SPA model.

Step Response for imp, arxqs, and n4s3

Note The step-response plot does not include the frequency-response model,
spad.

4-24

Identifying Models Using Default Settings

Tip You can use the step-response plot to estimate the dead time of linear
systems. For example, the previous step-response plot shows a time delay of
about 0.25 s before the system responds to the input. This response delay,
or dead time, is approximately equal to about three samples because the
sampling interval is 0.08 s for this data set.

Frequency-Response Plot
The following frequency-response plot shows agreement for the different
models, which means that all of these structures have similar dynamics.

Tip If you closed this plot window, select the Frequency resp check box
to reopen this window.

<} Frequency Function: power->temf = |EI|5|
File Options Styvle Channel Help
i Frequency response
10 — r
o
=
= -1
=R 3
por
=
% 2
10
I
=
%‘1 -200 4
&
m -400 ¢ : 1
o
o
=8l B e e R
10 10 10 10
Freguency (radis)
Ma frequency response for IMPULSE REZPONSE madel.

Frequency Response for Models spad, arxqs, and n4s3

4-25

4 1iiorial - Identifying Linear Models Using the GUI

Note The frequency-response plot does not include the impulse-response
model, imp.

Model-Output Plot
The Model Output window displays this model output together with the
measured output in the validation data.

Tip If you closed the Model Output window, select the Model output check
box to reopen this window.

=1k
File Options Style Channel Help
Measured and simulated model output
1.4
BestFits
1+ H 1 [nds3: 89.51
05t 1 arxs: 89.46
0 A H
-0.4
= \ d
-1.4¢E L
-2 L . 1
a0 a0 B0 70 a0
Time
Ma model output far P4 and CRA models.

Measured Output and Model Output for Models arxqs and n4s3

4-26

Identifying Models Using Default Settings

The model-output plot shows the model response to the input in the validation
data. The fit values for each model are summarized in the Best Fits area

of the Model Output window. The models in the Best Fits list are ordered
from best at the top to worst at the bottom. The fit between the two curves is
computed such that 100 means a perfect fit, and 0 indicates a poor fit (that
is, the model output has the same fit to the measured output as the mean of
the measured output).

In this example, the output of the models matches the validation data output,
which indicates that the models seem to capture the main system dynamics
and that linear modeling is sufficient.

Tip To compare predicted model output instead of simulated output, select
this option from the Options menu in the Model Output window.

Types of Models Generated by Quick Start
Quick Start estimates the following four types of models and adds the

following to the System Identification Tool GUI with default names:
® imp — Step response using the impulse algorithm.
This model is nonparametric (not expressed in terms of parameters).

® spad — Frequency response using the spa algorithm. The frequency
response is the Fourier transform of the impulse response of a linear
system.

This model is nonparametric and computes the response for each frequency
value. By default, the model is evaluated at 128 frequency values, ranging
from 0 to the Nyquist frequency.

4-27

4 1iiorial - Identifying Linear Models Using the GUI

® arxqs — Fourth-order autoregressive (ARX) model using the arx algorithm.

This model is parametric and has the following structure:

yB+a1yt-D+...+a,,yEt—n,) =
biu(t —ng)+...+ b, u(t —np —ng + 1) +e(?)

y(t) represents the output at time ¢, u(#) represents the input at time ¢, n is
the number of poles, n, is the number of b parameters (equal to the number
of zeros plus 1), n, is the number of samples before the input affects output
of the system (called dead time), and e(t) is the white-noise disturbance. The

System Identification Toolbox product estimates the parameters ¢4 ...a,
and b; ..., using the input and output data from the estimation data set.
In arxgs, n,=n,=4, and n, is estimated from the step response model imp.

® n4s3 — State-space model calculated using n4sid. The algorithm
automatically selects the model order (in this case, 3).

This model is parametric and has the following structure:

x(t+1) = Ax(t) + Bu(t) + Ke(t)
() = Cx(t) + Du(t) + e(t)

y(t) represents the output at time ¢, u(z) represents the input at time ¢, x
is the state vector, and e(?) is the white-noise disturbance. The System

Identification Toolbox product estimates the state-space matrices A, B,
C, D, and K.

4-28

Refining Models

Refining Models

In this section...

“Strategy for Refining Models” on page 4-29

“Estimating Possible Model Orders” on page 4-29
“Identifying State-Space and ARMAX Models” on page 4-34
“Choosing the Best Model” on page 4-38

Strategy for Refining Models

Because the simple models in “Identifying Models Using Default Settings” on
page 4-22 showed that a linear model sufficiently represents the dynamics
of the system, it is worthwhile to refine these preliminary estimates and
improve the model accuracy.

In this portion of the tutorial, you get accurate parametric models by
performing the following tasks:

1 Identifying initial model orders and delays from your data using a simple,
polynomial model structure (ARX).

2 Exploring more complex model structures with orders and delays close to
the initial values you found.

The resulting models are discrete-time models.

Tip You can convert a discrete-time model to a continuous-time model using
the d2c command. For more information, see the corresponding reference

page.

Estimating Possible Model Orders

To identify black-box models, you must specify the model order. However,
what model orders should you specify for your black-box models? To answer
this question, you can estimate simple polynomial (ARX) models for a range of
orders and delays and compare the performance of these models. You choose

4-29

4 1iiorial - Identifying Linear Models Using the GUI

4-30

the orders and delays that correspond to the best model fit as an initial guess
for more accurate modeling.

About ARX Models
For a single-input/single-output system (SISO), the ARX model structure is:
y@®+ayt-D+...+a,,yt-n,) =

biult —ng)+...+ b pult —np —ny +1) +e(t)

y(t) represents the output at time ¢, u(¢) represents the input at time ¢, n is
the number of poles, n, is the number of zeros plus 1, n,, is the number of
samples before the input affects the system output, and e(?) is the white-noise
disturbance.

You must specify the model orders to estimate ARX models.

The System Identification Toolbox™ product estimates the parameters
Qi ...a, and b;...b, using the data and the model orders you specify.
How to Estimate Model Orders

1 In the System Identification Tool GUI, select Estimate > Linear
parametric models to open the Linear Parametric Models dialog box.

The ARX model is already selected by default in the Structure list.

Refining Models

2 Edit the Orders field to try all combinations of poles, zeros, delays, where
each value is from 1 to 10:

[1:10 1:10 1:10]

) Linear Parametric Models ;lglil
Structure: 2R (na b nk] -l
Orelers: [1:101:10 1:10]

Ecjuistion: Ay=Bu+e
hethoct: ¥ AR Lol
hame: I

Facus: IF'redic:tiDn ,I Intial state: I’ﬂ"‘"':' vI
Dist. model. Estimate Covariance: IEs:timatE vI

[teration Fit: Improyement
[Trace Stop fterations |
Order Selection I Order Editor. . |
Estimate | Close Help |

4-31

4 1iiorial - Identifying Linear Models Using the GUI

3 Click Estimate to open the ARX Model Structure Selection window, which
displays the model performance for each combination of model parameters.

=} ARX Model Structure Selection -0l x|

File Options Stwle Help

Madel Misfitws number of par's
2 Murnber of par's

Green: MOL Choice

Elue: AIC Chaice I 5

1.5 Red Best Fit] | Misfit=0.20086

na=g
nkb=9

nk=2

0.5 1 Inzert |

h_n Close |

“-I:“]]]]-l-l-”” He|p |
10 20

Murmber of par's

Unexplained output variance in %)

a0

Click on bars ta inspect models.

You use this plot to select the best-fit model. The horizontal axis is the
total number of parameters:

Number of parameters =n, +ny

The vertical axis, called Unexplained output variance (in %), is

the portion of the output not explained by the model—the ARX model
prediction error for a specific number of parameters. The prediction error
is the sum of the squares of the differences between the validation data
output and the model output.

4-32

Refining Models

Three rectangles are highlighted on the plot in green, blue, and red. Each
color indicates a type of best-fit criterion, as follows:

® Red — Best fit minimizes the sum of the squares of the difference
between the validation data output and the model output. This rectangle
indicates the overall best fit.

® Green — Best fit minimizes Rissanen MDL criterion.

e Blue — Best fit minimizes Akaike AIC criterion.

In this tutorial, the Unexplained output variance (in %) value remains
approximately constant for the combined number of parameters from 4 to
20. Such constancy indicates that model performance does not improve at
higher orders. Thus, low-order models might fit the data equally well.

Note When you use the same data set for estimation and validation, use
the MDL and AIC criteria to select model orders. These criteria compensate
for overfitting that results from using too many parameters.

4 In the ARX Model Structure Selection window, select the red bar
(corresponding to 15 on the horizontal axis), and click Insert. This
selection inserts n =6, n,=9, and n,=2 into the Linear Parametric Models
dialog box and performs the estimation.

This action adds the model arx692 to the System Identification Tool GUI
and updates the plots to include the response of the model.

Note The default name of the parametric model contains the model type
and the number of poles, zeros, and delays. For example, arx692 is an ARX
model with n,=6, n,=9, and a delay of two samples.

5 In the ARX Model Structure Selection window, select the bar corresponding
to 4 on the horizontal axis (the lowest order that still gives a good fit),
and click Insert.

® This selection inserts n,=2, n,=2, and n,=3 (a delay of three samples) into
the Linear Parametric Models dialog box and performs the estimation.

4-33

4 1iiorial - Identifying Linear Models Using the GUI

4-34

® The model arx223 is added to the System Identification Tool GUI and
the plots are updated to include its response and output.

6 Click Close to close the ARX Model Structure Selection window.

Identifying State-Space and ARMAX Models

By estimating ARX models for different order combinations, as described in
“Estimating Possible Model Orders” on page 4-29, you identified the number
of poles, zeros, and delays that provide a good starting point for systematically
exploring different models.

The overall best fit for this system corresponds to a model with six poles, nine
zeros, and a delay of two samples. It also showed that a low-order model with
n,=2 (two poles), n,=2 (one zero), and n,=3 also provides a good fit.

About State-Space Models

The general state-space model structure is:

x(t+1) = Ax(t) + Bu(t) + Ke(t)
() = Cx(t) + Du(t) + e(t)

where y(t) represents the output at time ¢, u(¢) represents the input at time ¢,
x(t) is the state values at time ¢, and e(?) is the white-noise disturbance.

You must specify a single integer as the model order to estimate a state-space
model. By default, the delay equals 1.

The System Identification Toolbox product estimates the state-space matrices
A, B, C, D, and K using the model order and the data you specify.

The state-space model structure is a good choice for quick estimation because
it contains only two parameters: n is the number of poles (the size of the A
matrix) and nk is the delay.

About ARMAX Models

For a single-input/single-output system (SISO), the ARMAX polynomial
model structure is:

Refining Models

y®+a1yE-D+...+a,,yEt—n,) =
bju(t—ng)+...+bpu(t —ng —ny + D+
e +ciet-D+...+c,et—n.)

y(t) represents the output at time ¢, u(¢) represents the input at time ¢, n is
the number of poles for the dynamic model, n, is the number of zeros plus 1,
n,is the number of poles for the disturbance model, n,, is the dead time (in
terms of the number of samples) before the input affects output of the system,
and e(t) is the white-noise disturbance.

Note The ARMAX model is more flexible than the ARX model because
the ARMAX structure contains an extra polynomial to model the additive
disturbance.

You must specify the model orders to estimate ARMAX models.

The System Identification Toolbox product estimates the parameters «; ...q, ,

...b, ,and c¢; ...c, using the data and the model orders you specify.
n 1 n

How to Estimate State-Space and ARMAX Models
To explore the state-space and ARMAX model structures:

1 In the System Identification Tool GUI, select Estimate > Linear
parametric models to open the Linear Parametric Models dialog box.

2 From the Structure list, select State Space: n [nk].
3 In the Orders field, type 6 to create a sixth-order state-space model.
This choice is based on the fact that the best-fit ARX model has six poles.

4 Click Estimate to add a state-space model called n4s6 to the System
Identification Tool GUI.

5 From the Structure list, select ARMAX: [na nb nc nk] to estimate an
ARMAX model.

4-35

4 1iiorial - Identifying Linear Models Using the GUI

6 In the Orders field, set the orders na, nb, nc, and nk to the following values:

2222

The model name in the Name field is amx2222, by default.

7 Click Estimate to add the ARMAX model to the System Identification
Tool GUI.

Tip If you closed the Model Output window, you can regenerate it by
selecting the Model output check box in the System Identification Tool
GUI. If the new model does not appear on the plot, click the model icon in
the System Identification Tool GUI to make the model active.

4-36

Refining Models

The fit for amx2222 is about 1% lower than the other models.

=R
File Options Style Channel Help
Measured and simulated model output
1.5 T T .
y ! i ; Best Fits
L Moo b b i i i ;
1 'l'_| |' ll_‘ll.- |. ; |.||| A . F .--.:' i\ arkB92 8978
'R 1, 1)
0.5 1AL i {0
f' s y i [nd=389.41
ol P 'il- " " 1 |amgs: 89.46
" | 1 1 Bl Ll 11 o
sl | ! . .-,'I"II i'. am22.3..8.9..1.8
el : § : i
-7 L . i
40 a0 a1l T an
Time
Mo model output for SPA and CRA models.

Note The Best Fits area in the Model Output window sorts models such
that models with the best-fit model appear at the top.

4-37

4 1iiorial - Identifying Linear Models Using the GUI

8 Repeat steps 6 and 7 using higher Orders 3 3 2 2. These orders result in

a model that fits the data almost as well as the higher order ARX model
arxeoz.

=
File Options Style Channel Help
Measured and simulated model output
1.5 T . .
. ! i ; Best Fits
e op i i Ak Waneaz sars
LN “' | Lh | | |I WAt
oSt 10 h I b -
! ! ! II I.l ' II
of ! I ¥ flH nds3: 8951
1 1 ! | | 3
e Ll 117 Il ¥ | | :l.l-|| H'. || [raus: 89.46
1 HBlan223 89.18
Ak 1| f l
1.5k } \ _
] . . ;
40 a0 G0 7a a0
Time
Mo model output for SPA and CRA models.

Learn More

To learn more about identifying state-space models, see the corresponding
section in the System Identification Toolbox User’s Guide.

To learn more about identifying polynomial models, such as ARMAX, see the
corresponding section in the System Identification Toolbox User’s Guide.

Choosing the Best Model

* “Summary of Models” on page 4-39
¢ “Examining the Model Output” on page 4-39
¢ “Examining Model Residuals” on page 4-42

4-38

Refining Models

Summary of Models

The following figure shows the System Identification Tool GUI, which includes
all of the models you estimated so far.

<) System Identification Tool - full_est : - IDlll
File Options Window Help

Ilmport data - l Ilmpor‘t models - l

l Cperations ;
,V\ |<-- Preprocess - l !\'— J

estimate validate 1‘ imp spad arxgs nds3d
v PN T
arxBa2 arx2dd nds6 A 2222
=) —
estimate
‘Wiorking Data
Amx 3322
I Estimate --= - l
Data Wiews Model Yiews
To To

[~ Time plat \Wiorkspace (|LTIViewer | [Model autput [Transiertresp [Monlinesr ARK
[~ Data spectra ¥ Model resids [~ Freguencyresp [Hamm-tiensr
[Frequency function [~ Zeros and poles

Exit validate [Moise spectrum

= Yalilation Data
Click acknowledged. Mo action invoked.

Examining the Model Output

A good model is the simplest model that best explains the dynamics and
successfully simulates or predicts the output for different inputs.

The Model Output window should be already open. It is automatically
updated to include the new models you identified. Examine the model-output
plot to see how well the model output matches the measured output in the
validation data set.

Tip If you closed the Model Output plot, you can regenerate it by selecting
the Model output check box in the System Identification Tool GUI. If the
new model does not appear on the plot, click the model icon in the System
Identification Tool GUI to include this model on plots.

4-39

4 1iiorial - Identifying Linear Models Using the GUI

4-40

Models are listed by name in the Best Fits area of the Model Output plot.
The highest-order model you created, arx692, fits the data as well as the
simpler model amx3322.

1ol
File Options Style Channel Help
Measured and simulated model autput
1.5
| ! i f BestFits
w0 op i ok Wansez s rs
[I hll I '-h | | I| i]}
nsl- I 0l '.T._.ll.l H | | .-I.._
1 { f |I I.l l I|
af Il 1! YN inds 3 89.51
I] '
- AR I ¥ | I :H H'. || [Aregs: 8946
| 1 1 et 4 arx223: 8918
=l K I (i d
Eiay ' ¢ § _
il L . L
a0 a0 B0 ‘0 20
Time
Ma model output far P4 and CRA models.

Tip To validate your models using a different data set, you can drag and drop
this data set into the Validation Data rectangle in the System Identification
Tool GUI. This action automatically updates any open model views. If you
transform validation data into the frequency domain, the model-output plot
updates to show the model comparison in the frequency domain.

Refining Models

To get a closer look at how well these models fit the data, magnify a portion of
the plot by clicking and dragging a rectangle around the region of interest, as

shown in the following figure.

=10l x|

File Options Style Channel Help
Measured and simulated model autput
1.5 -
| ! 0 f BestFits
0o r En k) Waneez s rs
LI “ l:. '-h 1t 'll l
'R 1))
0.5} -I' 1 1 .'II'| “ |]
ik i b .I. l II
ol | | '!. 1 i i HH Inds3: 89.51
s |l | 1 . I _.'“| i'. arxgs: 8946
Lt | Wl { lam223 8918
=) |18 | 1 -I. E an
- AR {]
il L I L
a0 a0 B0 ‘0 20
Time
Ma model output far P4 and CRA models.

4-41

4 1iiorial - Identifying Linear Models Using the GUI

4-42

Releasing the mouse magnifies this region and shows that all models seem to
agree with the validation data.

<} Model Dutput: temperature] = |EI|£|

File Options Style Channel Help

Measured and simulated model autput
A A Best Fits

- ::{ l'fml Iﬁ lf n 3'\' F’K ::(- ArEBgZ 59.78

o | 1 |h4s3: 83 51
I III '.# M ']
050 B 4 | [ras: 29 46
"- [} anz23: 89.18
|.__
15l B |

54 46 58 EBO B2 G4
Titre

Ma model output far P4 and CRA models.

Examining Model Residuals

In addition to comparing model output to measured output, you can validate
a model by checking the behavior of its residuals.

To generate a residual analysis plot, select the Model resids check box in
the System Identification Tool GUI.

Refining Models

=)} Residual Analysis: power--temper; o]

File Options Stwle Channel Help|

Autacaorrelation of residuals for output termperature
0.4 " — .

-0.5

Cross
0.4a

gsids

Samples

Mo plat for CRA ahd SPA models.

The top axes show the autocorrelation of residuals for the temperature output
(whiteness test). The horizontal scale is the number of lags, or the difference
between the time steps that are correlated. The horizontal dashed lines on
the plot represent the model confidence interval. Any fluctuations within the
confidence interval are considered to be insignificant. Two of the models, n4s3
and arx223, produce residuals that enter outside the confidence interval.

A good model should have a residual autocorrelation function within the
confidence interval, indicating that the residuals are uncorrelated.

The bottom axes show the cross-correlation of the residuals with the
input. A good model should have residuals uncorrelated with past inputs
(independence test). Evidence of correlation indicates that the model does
not describe how a portion of the output relates to the corresponding input.
For example, when there is a peak outside the confidence interval for lag £,
this means that the contribution to the output y(¢) that originates from the
input u(¢-k) is not properly described by the model. The models arxgs and
amx2222 extend beyond the confidence interval and do not perform as well
as the other models.

4-43

4 1iiorial - Identifying Linear Models Using the GUI

Click the model icons n4s3, arx223, arxqgs, and amx2222 in the System
Identification Tool GUI to remove them from the Residual Analysis plot. The
Residual Analysis plot now includes only the three models that pass the
residual tests: arx692, n4s6, and amx3322.

=) Residual Analysis: power-=E EMper; = |EI|E|
File Options Stwle Channel Help

Autacaorrelation of residuals for output termperature

-0.2 - - -

Cross corr for input power and output termperature resids
0.2 . . y

L]

[
3
o
{’.-"
k3
r
4

-0.2

Samples

Mo plat for CRA ahd SPA models.

The plots for these models fall within the confidence intervals. Therefore, it is
reasonable to pick the simpler, low-order model amx3322 as the final choice.
The amx3322 output agrees well with the measured output.

4-44

Viewing Model Parameters

Viewing Model Parameters

In this section...

“Viewing Model Parameter Values” on page 4-45

“Viewing Parameter Uncertainties” on page 4-47

Viewing Model Parameter Values

You can view the numerical parameter values of the model amx3322 by
right-clicking the model icon in the System Identification Tool GUI. The
Data/model Info dialog box opens.

-} Data/model Info: amx3322 -0l x|

Model narme: Iamx3322

Colar; l1 ,DE,DT]

Dizcrete-time IDPOLY madel: A0gyvit) = Blgut) + C(q)e(t);l
Al =1-1.46 g1 + 06604 -2 - 0.09799 g3

Bc) = 0.00317 g*-2 + 00622 g3 + 0.03176 o4

Clo) =1 - 0.4506 g1 + 01861 g2

Estimated using PEM from data set estimate

Loss function 0.00156111 and FPE 000181293

Zampling interval; 0.05 L2}
K | |‘I

Diary And Motes

load dryer2 ﬂ
W Import zample

zampled = detrend(zample,0)

estimate = sampled([1:500])

amx 3322 = armaxlestimate [33 2 2] X

Prezent Cloze Help

4-45

4 1iiorial - Identifying Linear Models Using the GUI

4-46

The noneditable area of the Data/model Info dialog box lists the following
parameter values:

A(gq) =1 - 1.469"-1 + 0.66049"-2 - 0.097999"-3
B(gq) = 0.003179"-2 + 0.06229"-3 + 0.031769"-4
C(q) =1 - 0.4806q9"-1 + 0.18619"-2

These parameter values correspond to the following difference equation for
your system:

y(#)-1.46y(t-1)+0.6604y(t —2) - 0.09799y(t - 3) =
0.00317u(t —2)+0.622u(t — 3) + 0.03176u(t —4) +
e(t)—0.4806e(t —1) + 0.1861e(t — 2)

Note The coefficient of u(¢-2) is not significantly different from zero. This
lack of difference explains why delay values of both 2 and 3 give good results.

Parameter values appear in the following format:

AQ=1+a1q +...+a,,q ™
B(@)=big +...4b,,g ™

Cl@Q=1+c1q +...+cpq ™

Viewing Model Parameters

The parameters appear in the ARMAX model structure, as follows:

A(@)y(t) = B(@u(t) + C(qle(t)

which corresponds to this general difference equation:

yB+ayE-D+...+a,,yEt—n,) =
bju(t—ng)+...+bpu(t —ny —np + D+
e®)+ciet—-D+...+c,e(t—n.)

y(t) represents the output at time ¢, u(t) represents the input at time ¢, n is
the number of poles for the dynamic model, n, is the number of zeros plus 1,
n, is the number of poles for the disturbance model, n, is the dead time (in
terms of the number of samples) before the input affects output of the system,
and e(?) is the white-noise disturbance.

Viewing Parameter Uncertainties

To view parameter uncertainties, click Present in the Data/model Info dialog
box, and view the model information in the MATLAB® Command Window.
A(q) = - 1.46(+-0.06003)q9"-1
0.6604(+-0.08906)q"-2
0.09799(+-0.03519)q"-3
.00317(+-0.001646)q"-2
0.0622(+-0.002425)q"-3
0.03176(+-0.005629)q"-4
0.4806(+-0.07558)q" -1
0.1861(+-0.05597)q"-2

-+ + 0 + =

+

The 1-standard-deviation uncertainty for each set of model parameters is in
parentheses next to each parameter value.

4-47

4 1iiorial - Identifying Linear Models Using the GUI

Exporting the Model to the MATLAB® Workspace

The models you create in the System Identification Tool GUI are not
automatically available in the MATLAB® workspace. To make a model
available to other toolboxes, the Simulink® software, and the System
Identification Toolbox™ commands, you must export your model from the
System Identification Tool to the MATLAB workspace. For example, if the
model is a plant that requires a controller, you can import the model from the
MATLAB workspace into the Control System Toolbox™ product.

To export the amx3322 model, drag it to the To Workspace rectangle in
the System Identification Tool GUI. The model appears in the MATLAB
Workspace browser.

_imi x

File Edit ‘Wew Graphics Debug Deskbop Window »

': ﬂ Eﬁ % |)ﬁ ‘ T ‘Stack:IBase vl
Mame ¢ |'l.-'a|ue |Class

5] arnx3322 <1x1%8 idpoly= idpaly

Kl | H

Note This model is an object that belongs to the idpoly class. To learn more
about this model object, see the corresponding reference page.

After the model is in the MATLAB workspace, you can perform other
operations on the model. For example, if you have the Control System Toolbox
product installed, you might transform the model to a state-space LTI object
using:

ss_model=ss(amx3322)

4-48

Exporting the Model to the MATLAB® Workspace

You can extract the dynamic model and ignore the noise model using the
following command:

ss_model=ss_model('m')

4-49

4 1iiorial - Identifying Linear Models Using the GUI

Exporting the Model to the LTI Viewer

If you have the Control System Toolbox™ product installed on your computer,
the To LTI Viewer rectangle appears in the System Identification Tool GUI.

The LTI Viewer is a graphical user interface for viewing and manipulating
the response plots of linear models. It displays the following plots:

e Step- and impulse-response

¢ Bode, Nyquist, and Nichols

¢ Frequency-response singular values

® Pole/zero

® Response to general input signals

¢ Unforced response starting from given initial states (only for state-space

models)

To plot a model in the LTI Viewer, drag and drop the model icon to the To LTI
Viewer rectangle in the System Identification Tool GUI.

For more information about working with plots in the LTI Viewer, see the
Control System Toolbox documentation.

4-50

Tutorial — Identifying
Low-Order Transfer

Functions (Process Models)
Using the GUI

About This Tutorial (p. 5-3) Overview of the tutorial for
estimating continuous-time
transfer functions from
single-input/single-output (SISO)

data

What Is a Continuous-Time Process Description of the linear,

Model? (p. 5-5) continuous-time transfer function
(process model)

Preparing Data (p. 5-6) How to load the sample MAT-file

into the MATLAB® workspace,
open the System Identification Tool
GUI, import a data object into the
System Identification Tool from the
MATLAB workspace, and plot and
preprocess the data

Estimating Second-Order Transfer How to estimate a second-order
Functions (Process Models) with transfer function with complex poles
Complex Poles (p. 5-13) (underdamped modes)

Refining the Model by Including a How to improve the model by
Noise Model (p. 5-22) modifying the estimation algorithm

5 Tutorial - Identifying Low-Order Transfer Functions (Process Models) Using the GUI

5-2

Viewing Model Parameters (p. 5-26)

Exporting the Model to the
MATLAB® Workspace (p. 5-29)

Using the System Identification
Toolbox™ Product with the
Simulink® Software (p. 5-30)

How to view estimated model
parameters and the history of
operations on the model and the
corresponding data

How to make the model available
to operations in the MATLAB
Command Window for further
processing with this toolbox or other
MathWorks™ products

How to create and simulate a System
Identification Toolbox™ model using
the Simulink® software

About This Tutorial

About This Tutorial

In this section...

“Objectives” on page 5-3

“Sample Data” on page 5-3

Obijectives

Estimate and validate simple, continuous-time transfer functions from
single-input/single-output (SISO) data to find the one that best represents
your system dynamics.

After completing this tutorial, you will be able to accomplish the following
tasks using the System Identification Tool GUI:

¢ Import data objects from the MATLAB® workspace into the GUI.

¢ Plot and preprocess data.

¢ Estimate and validate low-order, continuous-time models from the data.
e Export models to the MATLAB workspace.

¢ Export models to the LTI Viewer for linear analysis (requires the Control
System Toolbox™ product).

Sample Data

The sample data you use in this tutorial is in proc_data.mat, which contains
200 samples of simulated single-input/single-output (SISO) time-domain
data. The input is a random binary signal that oscillates between -1 and 1.
White noise is added to the input with a standard deviation of 0.2, which
results in a signal-to-noise ratio of about 20 dB. This data is simulated using a
second-order system with underdamped modes (complex poles) and a peak
response at 1 rad/s:

G(s) = %ﬂs
1+0.2s+s

The sampling interval of the simulation is 1 second.

5 Tutorial - Identifying Low-Order Transfer Functions (Process Models) Using the GUI

Note This tutorial uses time-domain data to demonstrate how you
can estimate linear models. However, the same workflow applies to
frequency-domain data.

What Is a Continuous-Time Process Model2

What Is a Continuous-Time Process Model?

Continuous-time process models are low-order transfer functions that describe
the system dynamics using static gain, time delay before the system output
responds to the input, and characteristic time constants associated with poles
and zeros. Such models are popular in the industry and are often used for
tuning PID controllers, for example. Process model parameters have physical
significance.

You can specify different process model structures by varying the number of
poles, adding an integrator, or adding or removing a time delay or a zero. The
highest process model order you can specify in this toolbox is three, and the
poles can be real or complex (underdamped modes).

In general, a linear system is characterized by a transfer function G, which is
an operator that takes the input u to the output y:

y=Gu

For a continuous-time system, G relates the Laplace transforms of the input
U(s) and the output Y(s), as follows:

Y(s) = G(s)U(s)

In this tutorial, you estimate G using different process-model structures.

For example, the following model structure is a first-order, continuous-time
model, where K is the static gain, Tp1 is a time constant, and T, is the
input-to-output delay:

K e—sTd

G(s) = 2%
© =TT,

5 Tutorial - Identifying Low-Order Transfer Functions (Process Models) Using the GUI

5-6

Preparing Data

In this section...

“Loading Data into the MATLAB® Workspace” on page 5-6
“Opening the System Identification Tool GUI” on page 5-6
“Importing Data Objects into the System Identification Tool” on page 5-7

“Plotting and Preprocessing Data” on page 5-9

Loading Data into the MATLAB® Workspace

Load sample data in proc_data.mat by typing the following command in
the MATLAB® Command Window:

load proc_data

This command loads the data into the MATLAB workspace as the data
object z. For more information about iddata objects, see the corresponding
reference page.

Opening the System Identification Tool GUI

To open the System Identification Tool GUI, type the following command
MATLAB Command Window:

ident

Preparing Data

The default session name, Untitled, appears in the title bar.

<} System Identification Tool - Untitled : - 18] x|
File Options Window Help
Ilmport data - l Ilmpor‘t models - l
* Operations *
|<-- Preprocess - l
=
‘Wiorking Data
I Estimate --= - l
Data Wiews Model Yiews
To To
I~ Time: plat \Wiorkspace | |LTIViewwer | [T hode! outpot [~ Transient resp | L EE
[~ Data spectrs [~ Macdel resids [~ Freguency tesp [T Hamm-niener
[~ Frecuency. function [~ Zetos and poles
Ezxit I~ Moize spectrum
==t walidation Dats
Status line is here.

Importing Data Objects into the System Identification

Tool

You can import the data objects into the GUI from the MATLAB workspace.
You must have already opened the GUI, as described in “Opening the System
Identification Tool GUI” on page 5-6.

1 In the System Identification Tool GUI, select Import data > Data object.

This action opens the Import Data dialog box.

Impart data j

Impart data
Tirme domain data...
Freq. domain data. ..

Example...

5 Tutorial - Identifying Low-Order Transfer Functions (Process Models) Using the GUI

2 Specify the following options:

® Object — Enter z as the name of the MATLAB variable that is the
time-domain data object. Press Enter.

¢ Data name — Use the default name z, which is the same as the name
of the data object you are importing. This name labels the data in the
System Identification Tool GUI after the import operation is completed.

® Starting time — Enter 0 as the starting time. This value designates
the starting value of the time axis on time plots.

¢ Sampling interval — Enter 1 as the time between successive samples
in seconds. This value represents the actual sampling interval in the
experiment.

The Import Data dialog box now resembles the following figure.

=13lx|

Data Format for Signals

IDDATA or IDFRD/FRD [~ |

Workspace Variable

Ohject: lz
Ohject clazs: IDDATA, (Titme Dormait)

Data Information

Data name: ﬁ
Starting time: h
Sampling interval: |1—

hore |

Import I Reszet I

Cloze I Help I

Preparing Data

3 Click Import to add the icon named z to the System Identification Tool
GUL

rnpart data H
Jv Operations

“w |~:-- Preprocess j
z

1)
Al

z
Wiorking Data

i

| Estimate = -]

=

4 Click Close to close the Import Data dialog box.

Plotting and Preprocessing Data

In this portion of the tutorial, you examine the data and prepare it for system
identification. You learn how to:

® Plot the data.
® Subtract the mean values of the input and the output to remove offsets.

® Split the data into two parts. You use one part of the data for model
estimation, and the other part of the data for model validation.

The reason you subtract the mean values from each signal is because,
typically, you build linear models that describe the responses for deviations
from a physical equilibrium. With steady-state data, it is reasonable

to assume that the starting levels of the signals correspond to such an
equilibrium. Thus, you can seek models around zero without modeling the
absolute equilibrium levels in physical units.

You must have already imported data into the System Identification Tool, as
described in “Importing Data Objects into the System Identification Tool”
on page 5-7.

5 Tutorial - Identifying Low-Order Transfer Functions (Process Models) Using the GUI

5-10

Tip For information about other types of preprocessing, such as resampling
and filtering the data, see the topics on plotting and preprocessing data in the
System Identification Toolbox User’s Guide.

1 In the System Identification Tool GUI, select the Time plot check box to
open the Time Plot window.

<) Time Plok: ul-=y¥1 _ o]
File Options Stwle Channel Help
Input and output signals
] r : .
st]
-5 L L i
1
= Op
-1
1] al 100 1580 200
Time

The bottom axes show the simulated input data—a random binary
sequence, and the top axes show the simulated output data.

The next two steps demonstrate how to modify the axis limits in the plot.

2 To modify the vertical-axis limits for the input data, select Options > Set
axes limits.

Preparing Data

3 In the Limits for Time Plot dialog box, set the new vertical axis limit of the
input data channel ul to [-1.5 1.5]. Click Apply and Close.

JRIeTE
Time [V Auto
[0 z00) [Log
%1 [V Auto
[-55] [Loy
L v Auto
[-151.3 [Log
Apply | Cloze

Note The other two fields, Time and y1, let you set the axis limits for the
time axis and the output channel axis, respectively. In the Limits for Time
Plot dialog box, you can also modify each axis to be logarithmic or linear.

5-11

Tutorial — Identifying Low-Order Transfer Functions (Process Models) Using the GUI

5-12

The following figure shows the time plot.

<) Time Plok: ul-=y¥1 o]
File Options Stwle Channel Help
Input and output signals
] r : .
st]
-5 L L i
1t
= 1
-1
1] al 100 180 200
Time

4 In the System Identification Tool GUI, select <-Preprocess > Quick
start to simultaneously perform the following four actions:

Subtract the mean value from each channel.

Split the data into two parts.

Specify the first part of the data as estimation data (or Working Data).

Specify the second part of the data as Validation Data.

Estimating Second-Order Transfer Functions (Process Models) with Complex Poles

Estimating Second-Order Transfer Functions (Process
Models) with Complex Poles

In this section...

“Estimating a Second-Order Transfer Function Using Default Settings”
on page 5-13

“Tips for Specifying Known Parameters” on page 5-18
“Validating the Model” on page 5-18

Estimating a Second-Order Transfer Function Using
Default Settings

In this portion of the tutorial, you estimate models with this structure:

K T

G = (1 +28T,s + Tw232)

You must have already prepared the data for estimation, as described in
“Plotting and Preprocessing Data” on page 5-9.

5-13

5 T1utorial - Identifying Low-Order Transfer Functions (Process Models) Using the GUI

1 In the System Identification Tool GUI, select Estimate > Process models
to open the Process Models dialog box.

=10l

Model Transfer Function Pararneter Knowwh Walue Initisl Guess Bounds
K - | | auto | [infinf]
K exp(-Td =) LI | | auo | 0.001 Inf]
01+ Tpl =) P2 [o | © | 19001 Inf)
L [o | © | 19001 Inf)
Poles Iz = [o | © | Lt inf]
[=] fJerrea -l e | | auo | (030
Initial Guess
[~ ZFero
v Auto-selected
[Delay
~ From existing model: I
[Integrator -
{~ User-defined Yalue--=lnitial Guess

Disturbance Mocel: INl:unE = I Initial state: suto e
Focus: ISimuIation = I Covariance: IEstimate = I Options... |

teration Fit: Improverment [~ Trace Stop terations |

Mane: D Estitnate | Cloze | Help |

5-14

Estimating Second-Order Transfer Functions (Process Models) with Complex Poles

2 In the Model Transfer Function area, specify the following options:
e Under Poles, select 2 and Underdamped.

This selection updates the Model Transfer Function to a second-order
model structure that can contain complex poles.

hodel Transfer Function

K expl-Td =)

[1 + (2 Zeta Tw) = + (Twwe 212

Underdatmped u

Al real
[T Zero

¥ Delay
[T Integrator

The Parameter area now shows four active parameters: K, Tw, Zeta,
and Td. By default, the model Name is set to the acronym P2DU, which
indicates two poles (P2), the presence of a delay (D), and underdamped
modes (U).

Note You can edit the model name. Choose a model name that is unique
in the System Identification Tool GUI.

¢ Make sure that the Zero and Integrator check boxes are cleared to
exclude a zero and an integrator (self-regulating) from the model.

5-15

5 Tutorial - Identifying Low-Order Transfer Functions (Process Models) Using the GUI

5-16

3 In the Initial Guess area, select Auto-selected to calculate the initial
parameter values during the estimation. The Initial Guess column in
the Parameter table displays Auto.

Farameter Knowr Walue Initial Guess Boundz
o | | auto | [nf In]
(N | | | auto | [0.001 Inf]
ista = | | auto | [0.001 Inf]
w3 | o | o | [0.001 Inf]

= | o | o | Finting
=B | | auto | 1030
Initial Guess

{* Auto-selected

" Fram existing model: I

" U=ser-defined Salue--=Initial Guess

4 Keep the default Bounds values, which specify the minimum and
maximum values of each parameter.

When you know the range of possible values for a parameter, type these
values into the corresponding Bounds fields to help the estimation
algorithm.

5 Keep the defaults for the estimation algorithm settings:

¢ Disturbance Model — None means that the algorithm does not
estimate the noise model. This option also sets the Focus to Simulation.

¢ Focus — Simulation means that the estimation algorithm does not use
the noise model to weigh the relative importance of how closely to fit
the data in various frequency ranges. Instead, the algorithm uses the
input spectrum in a particular frequency range to weigh the relative
importance of the fit in that frequency range.

Estimating Second-Order Transfer Functions (Process Models) with Complex Poles

Tip The Simulation setting is optimized for data that has a high
signal-to-noise ratio and for when you plan to use your model for
simulation applications. If your system contains significant noise and
you want to either model the noise or improve parameter estimates
using the noise model, then select Prediction.

¢ Initial state — Auto means that the algorithm analyzes the data
and chooses the optimum method for handling the initial state of the
system. If you get poor results, you might try setting a specific method
for handling initial states, rather than choosing it automatically.

* Covariance — Estimate means that the algorithm computes parameter
uncertainties that display on plots as model confidence regions.

6 Click Estimate. This selection adds the model P2DU to the System
Identification Tool GUI.

5-17

5 Tutorial - Identifying Low-Order Transfer Functions (Process Models) Using the GUI

Tips for Specifying Known Parameters

If you know a parameter value exactly, type this value in the Initial Guess
column.

When you know the value of a parameter approximately, you can help the
estimation algorithms by entering an initial value in the Initial Guess
column. In this case, keep the Known check box cleared to allow the
estimation to fine-tune this initial guess.

For example, to fix the time-delay value Td at 2s, you can type the value into
Value field of the Parameter table in the Process Models dialog box and select
the corresponding Known check box.

Farameter Known Walue Initial Guess Bounds
|] | st | [ntinf]
A] | auto | [0.001 Inf]
Ista [~] | st | [0.001 Inf]
U | @ | o | [0.001 Inf]
= I e | it inf]
Td v | = [R
Initial Guess

" Auto-selected

™ From existing model:

% zer-defined Yalue--=lnitisl Guess

Validating the Model

In this portion of the tutorial, you generate the following two plots to examine
the model you created in “Estimating a Second-Order Transfer Function
Using Default Settings” on page 5-13:

¢ Comparison of the model output and the measured output on a time plot

5-18

Estimating Second-Order Transfer Functions (Process Models) with Complex Poles

® Autocorrelation of the output residuals, and cross-correlation of the input
and the output residuals

Examining Model Output

A good model is the simplest model that best explains the dynamics and
successfully simulates or predicts the output for different inputs. Use the
model-output plot to check how well the models output matches the measured
output in the validation data set.

To generate the model-output plot, select the Model output check box in
the System Identification Tool GUI.

-l x

File Options Style Channel Help

Measured and simulated model output

BestFits

F20L): 7976
21]
0 u
= i

100 120 140 160 180 200
Time

The System Identification Toolbox™ product uses input validation data as
input to the model, and plots the simulated output on top of the output
validation data. The preceding plot shows that the model output agrees with
the validation-data output.

5-19

5 Tutorial - Identifying Low-Order Transfer Functions (Process Models) Using the GUI

5-20

The Best Fits area of the Model Output plot shows the agreement (in percent)
between the model output and the validation-data output.

Recall that the sample data is simulated using the following second-order
system with underdamped modes (complex poles), and has a peak response at
1 rad/s:

G(s) = %e—%
1+0.2s+s

Because the data includes noise at the input during the simulation, the
estimated model cannot exactly reproduce the model used to simulate the
data.

Examining Model Residuals

In addition to comparing model output to measured output, you can validate
a model by checking the behavior of its residuals.

To generate a Residual Analysis plot, select the Model resids check box in
the System Identification Tool GUI.

Estimating Second-Order Transfer Functions (Process Models) with Complex Poles

=) Residual Analysis: ul-=y1 | = |EI|E|
File Options Stwle Channel Help

Autocorrelation of residuals for output y

Samples

The top axes show the autocorrelation of residuals for the output (whiteness
test). The horizontal scale is the number of lags, or the difference between
the time steps that are correlated. Any fluctuations within the confidence
interval are considered to be insignificant. A good model should have a
residual autocorrelation function within the confidence interval, indicating
that the residuals are uncorrelated. However, in this example, the residuals
appear to be correlated.

The bottom axes show the cross-correlation of the residuals with the

input. A good model should have residuals uncorrelated with past inputs
(independence test). Evidence of correlation indicates that the model does not
describe how a portion of the output relates to the corresponding input. For
example, when there is a peak outside the confidence interval for lag %, this
means that the contribution to the output y(z) that originates from the input
u(t-k) is not properly described by the model. In this example, there is no
correlation between the residuals and the inputs.

Thus, residual analysis indicates that this model is good, but that there might
be a need for a noise model.

5-21

5 Tutorial - Identifying Low-Order Transfer Functions (Process Models) Using the GUI

Refining the Model by Including a Noise Model

In this section...
“Estimating Models with Modified Settings” on page 5-22

“Comparing Models” on page 5-23

Estimating Models with Modified Settings

In this portion of the tutorial, you modify the estimation algorithm and
include a noise model to improve the model results.

Note The Process Models dialog box should still be open. If you closed it,
repeat the procedure in “Estimating a Second-Order Transfer Function Using
Default Settings” on page 5-13.

1 In the Process Models dialog box, modify the following settings:

® Focus — Set to Prediction to specify that the estimation algorithm use
the noise model to weigh the relative importance of how closely to fit
the data in various frequency ranges. The presence of (high-frequency)
noise results in the algorithm assigning less importance to fitting the
high-frequency portions of the data.

¢ Disturbance Model — Set to Order 1 to estimate a noise model H as a
continuous-time, first-order ARMA model:

y=Gu+ He

where e is white noise.

¢ Name — Edit the model name to P2DUe1 to generate a model with a
unique name in the System Identification Tool GUI.

2 Click Estimate.

3 In the Process Models dialog box, set the Disturbance Model to Order 2
to estimate a second-order noise model.

5-22

Refining the Model by Including a Noise Model

4 Edit the Name field to P2DUe2 to generate a model with a unique name in
the System Identification Tool GUI.

5 Click Estimate.

Comparing Models

The Model Output and the Residual Analysis windows dynamically update
to include the two new models. In this portion of the tutorial, you use these
plots to compare the estimated models.

Note If you closed these plots, you can reopen them by selecting the Model
output and the Model resids check boxes in the System Identification Tool

GUL

The following Model Output plot shows that the P2DUe2 model has a better
performance than the other two models. All three models show agreement
with the validation-data output.

1ol
File Options Stwle Channel Help
Measured and simulated model output
4 T . . y
Best Fits
P2DUe2: 8252
2t 4 [P2DLL 7976
F20Uet: 7969
0 -
= i
_4 1 1 L !
100 120 140 160 180 200
Time

5-23

5 T1utorial - Identifying Low-Order Transfer Functions (Process Models) Using the GUI

5-24

Futhermore, P2DUe2 falls well within the confidence bounds on the Residual
Analysis plot.

=) Residual Analysis: ul-=y1 = |EI|E|
File Options Stwle Channel Help

Autocorrelation of residuals for output y

Samples

To view residuals for P2DUe2 only, remove models P2DU and P2DUe1 from the
Residual Analysis plot by clicking the corresponding icons in the System
Identification Tool GUI.

Ilmp-:ur‘t models j

}
AP

FZOU |[FZDUe] |[P20Ue2
&

Refining the Model by Including a Noise Model

The Residual Analysis plot updates, as shown in the following figure.

-} Residual Analysis: ul-=y1 | o]

File

Options Stwle Channel Help

Autocorrelation of residuals for output y

0.5

o W\/\A/‘f\ W
-0.5 L L L

Cross corr for input ul and output v resids

0.5 y

0 /\/W/\/\,/\/\/\,A/\A-
-0.5 .

-20 10 o 10 20

Samples

The whiteness test for P2DUe2 shows that the residuals are uncorrelated, and
the independence test shows no correlation between the residuals and the
inputs. These tests indicate that P2DUe2 is a good model.

5-25

5 Tutorial - Identifying Low-Order Transfer Functions (Process Models) Using the GUI

5-26

Viewing Model Parameters

In this section...

“Viewing Model Parameter Values” on page 5-26

“Viewing Parameter Uncertainties” on page 5-27

Viewing Model Parameter Values

You can view the numerical parameter values and other information about

the model P2DUe2 by right-clicking the model icon in the System Identification
Tool GUI. The Data/model Info dialog box opens.

=} Data/model Info: P2DUe2 =10 x|
Madel name: P2DLIE2
i J0.6,0.1,1]
Process model with transter function s
(=)= . * expl-Tod*s) j
1+24 Zeta* Tyt Tywtz) "2

writh K = 0.96373
Twe = 0.93976

Zeta =0.097704 L2}
TAl = 1 2
Rl []

Diary And Motes

W Import z
zd = dtrendiz,0)
zde = zd([1:100])

P20UEZ = pemizde,'P20U"Dist’ ' ARMAZ™Y, =

Prezent I Cloze I Help |

The noneditable area of the dialog box lists the model coefficients that
correspond to the following model structure:

Viewing Model Parameters

G(s) = K e a8

(1 +2ET,,s+ Tw232)

For the model P2DUe2:

Kis 0.96379.

Tw is 0.98976.

Zeta is 0.097709.

Td is 2.0018.
These coefficients agree with the model used to simulate the data:

1 —2s

26

Gg)=——
1+0.2s+s

P2DUe2 also includes an additive noise term, where H is a second-order ARMA
model and e is white noise:

y=Gu+ He

The Data/model Info dialog box gives the noise model H as a ratio of two
polynomials, C(s) /D(s), where:

o
—_
w
-

1}

$"2 + 2.03(+-0.06772)s + 2.621(+-0.3984)
s"2 + 0.2123(+-0.07437)s + 1.113(+-0.07804)

lw]
()
1}

The 1-standard-deviation uncertainty for each set of model parameters is in
parentheses next to each parameter value.

Viewing Parameter Uncertainties

To view parameter uncertainties for the system transfer function, click
Present in the Data/model Info dialog box, and view the information in the
MATLAB® Command Window.

K = 0.96379+-0.018245
Tw = 0.98976+-0.0055579

5-27

5 Tutorial - Identifying Low-Order Transfer Functions (Process Models) Using the GUI

Zeta = 0.097709+-0.0064056
Td = 2.0018+-0.0025342

The 1-standard-deviation uncertainty for each model parameter follows the
+- symbol.

5-28

Exporting the Model to the MATLAB® Workspace

Exporting the Model to the MATLAB® Workspace

You can perform further analysis on your estimated models from the
MATLAB® workspace. For example, if the model is a plant that requires a
controller, you can import the model from the MATLAB workspace into the
Control System Toolbox™ product. Furthermore, to simulate your model in
the Simulink® software (perhaps as part of a larger dynamic system), you can
import this model as a Simulink block.

The models you create in the System Identification Tool GUI are not
automatically available in the MATLAB workspace. To make a model
available to other toolboxes, Simulink, and the System Identification
Toolbox™ commands, you must export your model from the System
Identification Tool to the MATLAB workspace.

To export the P2DUe2 model, drag it to the To Workspace rectangle in the
System Identification Tool GUI. The model now appears in the MATLAB
Workspace browser.

Note This model is an object of idproc class. Model objects encapsulate
all properties of the model. To learn more about this model object, see the
corresponding reference page.

5-29

5 T1utorial - Identifying Low-Order Transfer Functions (Process Models) Using the GUI

5-30

Using the System Identification Toolbox™ Product with
the Simulink® Software

In this section...

“Preparing Input Data” on page 5-30
“Building the Simulink® Model” on page 5-30

“Configuring Blocks and Simulation Parameters” on page 5-32

“Running the Simulation” on page 5-36

Preparing Input Data

You can create a simple Simulink® model that uses blocks from the System
Identification Toolbox™ library to bring the data z and the model P2DUe2
into Simulink.

You must have completed the previous steps in this tutorial to make these
variables available in the MATLAB® workspace.

Note Simulink must be installed to build a Simulink model.

Because you only need the input channel of z for providing input to the model,
type the following in the MATLAB Command Window:

z_input = z % Creates a new iddata object.
z_input.y = [] % Sets the output channel
% to empty.

Building the Simulink® Model

The following steps guide you through the process of adding blocks to a
Simulink model. For more information about working with Simulink models,
see the Simulink documentation.

1 In the MATLAB Command Window, type simulink in the MATLAB
Command Window.

Using the System Identification Toolbox™ Product with the Simulink® Software

2 Select File > New > Model to open a new model window.

3 In the Simulink Library Browser window, select the System
Identification Toolbox library. The right side of the window displays
blocks specific to the System Identification Toolbox product.

Tip An alternative way to access the System Identification block library is
to type slident in the MATLAB Command Window.

4 Drag the following System Identification Toolbox blocks to the new model
window:

e IDDATA Sink block
e IDDATA Source block
e IDMODEL model block

5 In the Simulink Library Browser window, select the Simulink > Sinks
library, and drag the Scope block to the new model window.

5-31

5 T1utorial - Identifying Low-Order Transfer Functions (Process Models) Using the GUI

6 In the Simulink model window, connect the blocks until your model
resembles the following figure.

L=

File Edit Wiew Simulation Format Tools Help

DI@H%I%EI@@{HS’Q|) l|1EI.D INDrmaI j|

P Input

IDDATA SINK

Output
Idd ata Sink
Input | ids1,1,1m . - L]
iddatai1,13 5
cope
Output b ldmodel
Iddata Saurce
Ready [1o09 | | |ode4s 4

In the next section, you configure these blocks to get data from the MATLAB
workspace and set the simulation time interval and duration.

Configuring Blocks and Simulation Parameters

The following procedure guides you through the following tasks that configure
the model blocks:

* Get data from the MATLAB workspace.

e Set the simulation time interval and duration.

1 In the new model window, select Simulation > Configuration
Parameters.

2 In the Configuration Parameters dialog box, type 200 in the Stop time
field. Click OK.

This value sets the duration of the simulation to 200 seconds.

5-32

Using the System Identification Toolbox™ Product with the Simulink® Software

3 Double-click the Iddata Source block to open the Source Block Parameters:
Iddata Source dialog box. Next, type the following variable name in the
Iddata object field:

z_input

This variable is the data object in the MATLAB workspace that contains
the input data.

E! Source Block Parameters: Iddata Source x|

—lddata [nputOutput [mazk] [link]

Thiz block alloves toimpart IDOATA object from the main work, space of Matlab,

The first output port of the block comezponds to the input signal of the |DDATA
object and the second output port comezponds to the output zignal.

Enter an IDDATA object in the dialog figld.

—Parameters

|ddata object

Z_input

] Cancel Help

Tip As a shortcut, you can drag and drop the variable name from the
MATLAB Workspace browser to the Iddata object field.

4 Click OK.

5-33

5 T1utorial - Identifying Low-Order Transfer Functions (Process Models) Using the GUI

5 Double-click the Idmodel block to open the Function Block Parameters:
Idmodel dialog box. Type the following variable name in the idmodel
variable field:

P2DUe2

This variable represents the name of the model in the MATLAB workspace.

[=1Function Block Parameters: Idmodel x|

—|dmodel Black [maszk] [link]

Enter any |dmadel object [|dpaly, 1dzz, [dars, |darey ar [dprac].
For zimulatiohz with noize, Seed(z] may be left empty for random
restarks.

Enter az many zeeds az there are outputs for specific realizations.

—Parameterz

idmode| wariable
|P2DUe2

|nitial ztate [ztate space anly: ‘2", 'm', or vechor |
|0
[~ Add noize

MHoize zeed(z). Defaulk empty

k. Cancel

5-34

Using the System Identification Toolbox™ Product with the Simulink® Software

6 Clear the Add noise check box to exclude noise from the system. Click OK.

When Add noise is selected, Simulink derives the noise amplitude from
the NoiseVariance property of the model and adds noise to the model
accordingly. The simulation propagates this noise according to the noise
model H that was estimated with the system dynamics:

y=Gu+ He

7 Double-click the Iddata Sink block to open the Sink Block Parameters:
Iddata Sink dialog box. Type the following variable name in the IDDATA
Name field:

z_sim_out

8 Type 1 in the Sample Time (sec.) field to set the sampling time of the
output data to match the sampling time of the input data. Click OK.

=1 sink Block Parameters: Iddata Sinl x|

—IDDATA Sink [mask] [link)

Enter in a name of a variable for which you would like the IDDATA
data object be zaved. The zample time is the rate that the data will
be zampled.

—Parameterz

IDDATA Mame

Iz_sim_n:nut

Sample Time [zec.]

[1

1[4 Cancel Help Apply

5-35

5 Tutorial - Identifying Low-Order Transfer Functions (Process Models) Using the GUI

5-36

The resulting change to the Simulink model is shown in the following figure.

L=

File Edit Wiew Simulation Format Tools Help

DeH&| BR[| 42 & p =1 Poo |[voma [5]|

P Input
IDDATA SINK
Output
Idd ata Sink
z_input Input e P2hUez foe |:|
ldmedel Soope
lddata Saurce
Ready [1o09 | |ode4s 4

Running the Simulation

1 In the Simulink model window, select Simulation > Start.

2 Double-click the Scope block to display the time plot of the model output.

Using the System Identification Toolbox™ Product with the Simulink® Software

-)scope =10l x|
SE|PLL ABE DA T -

|| II'J \'|||||“|“"|""|'+|‘”

Titme offset: 0O

3 In the MATLAB Workspace browser, notice the variable z_sim_out that
stores the model output as an iddata object. You specified this variable
name when you configured the Iddata Sink block.

This variable stores the simulated output of the model and it is now
available for further processing and exploration.

5-37

5 T1utorial - Identifying Low-Order Transfer Functions (Process Models) Using the GUI

5-38

Tutorial — Identifying
Linear Models Using the
Command Line

About This Tutorial (p. 6-3) Overview of the tutorial for
estimating linear models from
multiple-input/single-output (MISO)
data using the System Identification
Toolbox™ objects and methods

Preparing Data (p. 6-5) How to load the sample MAT-file
into the MATLAB® workspace, plot
the data, and subtract equilibrium
values from the data

Estimating Step- and How to estimate impulse-response

Frequency-Response Models and frequency-response models to

(p. 6-17) analyze the dynamic characteristics
of the system

Estimating Delays in the How to estimate input/output

Multiple-Input System (p. 6-22) delays in the system using an ARX

polynomial model

Estimating Model Orders Using an How to estimate model orders using

ARX Model Structure (p. 6-25) an ARX polynomial model
Estimating Continuous-Time How to estimate and validate a
Transfer Functions (Process Models) linear, continuous-time transfer
(p. 6-33) function (process model) both with

and without noise

6 Tutorial - Identifying Linear Models Using the Command Line

Estimating Black-Box Polynomial
Models (p. 6-44)

Simulating and Predicting Model
Output (p. 6-56)

How to estimate and validate ARX,
state-space, and Box-Jenkins models

How to simulate and predict model
output using sim and predict,
respectively

About This Tutorial

About This Tutorial

In this section...

“Objectives” on page 6-3

“Sample Data” on page 6-3

Obijectives

Estimate and validate linear models from multiple-input/single-output
(MISO) data to find the one that best represents your system dynamics.

After completing this tutorial, you will be able to accomplish the following
tasks using the command line:

¢ Create data objects to represent data.

Plot the data.

® Preprocess data by removing offsets from the input and output signals.

Estimate and validate linear models from the data.

Simulate and predict model output.

Sample Data
The sample data is the MAT-file co2data.mat, which contains two

experiments of two-input and single-output (MISO) time-domain data from a
steady-state that the operator perturbed from equilibrium values.

In the first experiment, the operator introduced a pulse wave to both inputs.
In the second experiment, the operator introduced a pulse wave to the first
input and a step signal to the second input.

6 Tutorial - Identifying Linear Models Using the Command Line

6-4

Input 1:

Rate of Chemical ——Jm{

Consumption
(kg/min)

Input 2:

Current (A) ————Tp

CO2
Production
Process

Cutput:

——3p Rate of CO2Z

Production
(mgfmin)

Note This tutorial uses time-domain data to demonstrate how you can
estimate linear models. This workflow also applies to frequency-domain data.

Preparing Data

Preparing Data

In this section...
“Loading Data into the MATLAB® Workspace” on page 6-5
“Plotting the Input/Output Data” on page 6-6

“Removing Equilibrium Values from the Data” on page 6-7

“Using Objects to Represent Data for System Identification” on page 6-8
“Creating iddata Objects” on page 6-9

“Plotting the Data” on page 6-11

“Selecting a Subset of the Data” on page 6-15

Loading Data into the MATLAB® Workspace

Load the sample data in co2data.mat by typing the following in the
MATLAB® Command Window:

load co2data;

This command loads the following five variables into the MATLAB Workspace
browser:

® Input_expl and Output_exp1 are the input and output data from the first
experiment, respectively.

® Input_exp2 and Output_exp2 are the input and output data from the
second experiment, respectively.

® Time is the time vector from 0 to 1000 minutes, increasing in equal
increments of 0.5 min.

For both experiments, the input data consists of two columns of values. The
first column of values is the rate of chemical consumption (in kilograms per
minute), and the second column of values is the current (in amperes). The
output data is a single column of the rate of carbon-dioxide production (in
milligrams per minute).

6 Tutorial - Identifying Linear Models Using the Command Line

Plotting the Input/Output Data

You can plot the input and output data from both experiments using the
following commands:

[}

% Plot the input and output data from both experiments
plot(Time,Input_exp1,Time,Output_exp1)

legend('Input 1','Input 2','Output 1')

figure

plot(Time,Input_exp2,Time,Output_exp2)

legend('Input 1','Input 2','Output 1')

The following plot shows the first experiment, where the operator applies a
pulse wave to each input to perturb it from its steady-state equilibrium.

-lolx]
File Edit Miew Insert Tools Desktop Window Help u
Ned&| h|aaMme @ 0B =83
200 T
Input 1 |
1680 ¢ Input 2
Clutput 1
100 F .
a0
ok 3
-0 «mmmm
_1D|:| 1 1 1 1
1] 200 400 GO0 800 1000

Input and Output Data from Experiment 1

Preparing Data

The following plot shows the second experiment, where the operator applies a
pulse wave to the first input and a step signal to the second input.

=
File Edit ‘Wiew Insert Tools Desktop Window Help k"
Ned&|heam®| e 0@ =0
200 T T T T
Input 1 ||
Input 2
i — Output 1
100 - .
all =
ot y
_ED 1 1 1 1
0 200 400 GO0 a0 1000

Input and Output Data from Experiment 2

Removing Equilibrium Values from the Data

Plotting the data, as described in “Plotting the Input/Output Data” on page
6-6, shows that the inputs and the outputs have nonzero equilibrium values.
In this portion of the tutorial, you subtract equilibrium values from the data.

The reason you subtract the mean values from each signal is because,
typically, you build linear models that describe the responses for deviations
from a physical equilibrium. With steady-state data, it is reasonable

to assume that the starting levels of the signals correspond to such an
equilibrium. Thus, you can seek models around zero without modeling the
absolute equilibrium levels in physical units.

6 Tutorial - Identifying Linear Models Using the Command Line

6-8

Zoom in on the plots to see that the earliest moment when the operator
applies a disturbance to the inputs occurs after 25 minutes of steady-state
conditions (or after the first 50 samples). Thus, the average value of the first
50 samples represents the equilibrium conditions.

Use the following commands to remove the equilibrium values from the inputs
and the outputs in both experiments:

% Remove the equilibrium values from inputs
% and outputs in both experiments:
Input_exp1 = Input_expl-...
ones(size(Input_exp1,1),1)*mean(Input_exp1(1:50,:));
Output_expl = Output_expi-...
mean (Output_exp1(1:50,:));
Input_exp2 = Input_exp2-...
ones(size(Input_exp2,1),1)*mean(Input_exp2(1:50,:));
Output_exp2 = Output_exp2-...
mean (Output_exp2(1:50,:));

Note The ones command replicates the two mean values, one for each input,
in a two-dimensional array.

Using Objects to Represent Data for System
Identification

The System Identification Toolbox™ data objects, iddata and idfrd,
encapsulate both data values and data properties into a single entity. You can
use the System Identification Toolbox commands to conveniently manipulate
these data objects as single entities.

In this portion of the tutorial, you create two iddata objects, one for each
of the two experiments. You use the data from Experiment 1 for model
estimation, and the data from Experiment 2 for model validation. You work
with two independent data sets because you use one data set for model
estimation and the other for model validation.

Preparing Data

Note When two independent data sets are not available, you can split one
data set into two parts, assuming that each part contains enough information
to adequately represent the system dynamics.

Creating iddata Objects

You must have already loaded the sample data into the MATLAB workspace,
as described in “Loading Data into the MATLAB® Workspace” on page 7-4.

Use these commands to create two data objects, ze and zv:

% Create two data objects, ze and zv.

Ts = 0.5; % Sampling interval is 0.5 min
ze = iddata(Output_expi1,Input_expl1,Ts);
iddata(Output_exp2,Input_exp2,Ts);

N
<
1}

ze contains data from Experiment 1 and zv contains data from Experiment 2.
Ts is the sampling interval.

The iddata constructor requires three arguments for time-domain data and
has the following syntax:

data_obj = iddata(output,input,sampling_interval);

To view the properties of an iddata object, use the get command. For
example, type this command to get the properties of the estimation data:

get(ze)

6 Tutorial - Identifying Linear Models Using the Command Line

6-10

MATLAB returns the following data properties and values:

Domain:

Name:
OutputData:

y:

OutputName:
OutputUnit:
InputData:

u:

InputName:
InputUnit:
Period:
InterSample:
Ts:

Tstart:
SamplingInstants:
TimeUnit:
ExperimentName:
Notes:
UserData:

‘Time'

[]

[2001x1 double]
‘Same as OutputData'
{'y1'}

{'"}

[2001x2 double]
‘Same as InputData’
{2x1 cell}

{2x1 cell}

[2x1 double]

{2x1 cell}

0.5000

[]
[2001x0 double]

"Exp1’
[]
[]

To learn more about these properties, see the iddata reference page.

Preparing Data

To modify data properties, you can use dot notation or the set command. For
example, to assign channel names and units that label plot axes, type the
following syntax in the MATLAB Command Window:

% Set time units to minutes
ze.TimeUnit = 'min';

% Set names of input channels

ze.InputName = {'ConsumptionRate', 'Current'};
% Set units for input variables

ze.InputUnit = {'kg/min','A'};

% Set name of output channel

ze.OutputName = 'Production’;

% Set unit of output channel

ze.OutputUnit = 'mg/min';

% Set validation data properties

zv.TimeUnit = 'min';

zv.InputName = {'ConsumptionRate’', 'Current'};
zv.InputUnit = {'kg/min',"'A'};

zv.OutputName = 'Production’;

zv.OutputUnit = 'mg/min';

You can verify that the InputName property of ze is changed, or “index into”
this property, by typing the following syntax:

ze.inputname

Tip Property names, such as InputUnit, are not case sensitive. You can also
abbreviate property names that start with Input or Output by substituting u
for Input and y for Output in the property name. For example, OutputUnit is
equivalent to yunit.

Plotting the Data
You can plot iddata objects using the MATLAB plot command:

plot(ze) % Plot the estimation data

6-11

6 Tutorial - Identifying Linear Models Using the Command Line

This opens the following plot. The bottom axes show the first input
ConsumptionRate, and the top axes show the output ProductionRate.

)Fguret - o x|

File Edit ‘Wiew Insert Tools Desktop Mindow Help N
D E& |y |aame |08 O

ProductionRate

a0

mg/min
(o}

_5|:| 1 1 1 1 1
0 200 400 GO0 800 1000 1200

Tirme (min)
ConsumptionRate

]

]
=
T

kafrmin

=2ig 1 I 1 1 1
0 200 400 BO0] o000 1200
Tirre (fmin)

Input 1 and Output for ze

For multivariable data, only one input/output pair appears on the plot at a
time. To view the second input Current, select the MATLAB Figure window,

and press Enter to update the plot.

6-12

Preparing Data

Tip For plots of data with multiple inputs and outputs, press Enter to view
the next input/output pair.

e _iBix]

File Edit ‘iew Insert Tools Desktop MWindow Help k"
DSy aame (08|80

ProductionRate

a0
AL
£ 0 :
[)
£
A0 1 1 1 1 1
0 200 400 GO0 a0 1000 1200
Tirne (fmin)
Current
4f . . : . . .
i 4

0 200 400 600 800 1000 1200
Tirme (min)

Input 2 and Output for ze

6-13

6 Tutorial - Identifying Linear Models Using the Command Line

To plot the validation data in a new MATLAB Figure window, type the
following commands in the MATLAB Command Window:

figure % Open a new MATLAB Figure window
plot(zv) % Plot the validation data

EETTEE— _ioix)

File Edit Miew Insert Tools Deskbop Window Help L
D ES|yaams (@08 0O

ProductionRate

40 T r . T T
= Al g
E
E 0 1
_2|:| 1 1 | 1 1
1] 200 400 B00 g0 1000 1200
Tirme (min)
ConsumptionRate
5T : : .
=
=
B | 1
=

1]
1] 200 400 B00 800 1000 1200
Tirme (min)

Input 1 and Output for zv

6-14

Preparing Data

Select the MATLAB Figure window, and press Enter to view the second input

on the plot.
rgmez W=
File Edit Miew Insert Tools Deskbop Window Help L
DedE| RaMmse | €| 0B 8O0
ProductionRate
40 T T . T T
= Ao .
£
£ 0 .
_2|:| 1 1 | 1 1
0 200 400 B0 aa0 1000 1200
Tirme (min)
Current
5 F T T . T T]
SE s
|:| 1 1 1 1 1
0 200 400 B00 a0 1000 1200
Tirme (min)

Input 2 and Output for zv

Zoom in on the plots to see that the experiment process amplifies the first
input (ConsumptionRate) by a factor of 2, and amplifies the second input

(Current) by a factor of 10.

Selecting a Subset of the Data

Before you begin, create a new data set that contains only the first 1000
samples of the original estimation and validation data sets to speed up the

calculations:
Zel = ze(1:1000);
Zv1l = zv(1:1000);

6-15

6 Tutorial - Identifying Linear Models Using the Command Line

For more information about indexing into iddata objects, see the
corresponding reference page.

6-16

Estimating Step- and Frequency-Response Models

Estimating Step- and Frequency-Response Models

In this section...

“Why Estimate Step- and Frequnecy-Response Models?” on page 6-17
“Estimating the Frequency Response” on page 6-17

“Estimating the Step Response” on page 6-20

Why Estimate Step- and Frequnecy-Response
Models?

Frequency-response and step-response are nonparametric models that can
help you understand the dynamic characteristics of your system. These
models are not represented by a compact mathematical formula with
adjustable parameters. Instead, they consist of data tables.

In this portion of the tutorial, you estimate these models using the data
set ze. You must have already created ze, as described in “Creating iddata
Objects” on page 6-9.

The response plots from these models show the following characteristics of
the system:

¢ The response from the first input to the output might be a second-order
function.

¢ The response from the second input to the output might be a first-order
or an overdamped function.

Estimating the Frequency Response

The System Identification Toolbox™ product provides three functions for
estimating the frequency response:
® etfe computes the empirical transfer function using Fourier analysis.

® spa estimates the transfer function using spectral analysis for a fixed
frequency resolution.

e spafdr lets you specify a variable frequency resolution for estimating the
frequency response.

6-17

6 Tutorial - Identifying Linear Models Using the Command Line

Use the spa command to estimate the frequency response:
Ge=spa(ze);

To plot the frequency response as a Bode plot, type the following command in
the MATLAB® Command Window:

bode (Ge)

This command produces the following plot.

Drgwer _lolx]
File Edit ‘Wiew Insert Tools Desktop Window Help N
NEWHa|hQade|E 08 8O
- From ConsumptionRate to ProductionRate
10 T :
=i}
=
=10 .
=
T
-2
-“:' L M S S A | L M S S e | L M T S R S
107 10" 10° 10/
400 r
‘2 200t .
2
g O .
A=
w 200} 8
Lir]
£ 400} 1
600 L L
107 10" 10° 10/
Frequency (radimin)

Frequency Response for the First Input-Output Path
The amplitude peaks at the frequency of about 0.7 rad/s, which suggests

a possible resonant behavior (complex poles) for the first input-to-output
combination—ConsumptionRate to ProductionRate.

6-18

Estimating Step- and Frequency-Response Models

To view the second input Current, select the MATLAB Figure window, and
press Enter. The input/output pair is displayed, as shown in the following

figure.
) hgure1 =10l x|
File Edit ‘Wiew Insert Tools Desktop Window Help N
NEWHa|hQade|E 08 8O
: Frorm Current to ProductionRate
10
o
=
=
=
= i}
{ 1|:| B T
10* 10’ 10" 10’
0 . .
W
(k]
=
o 500 - .
E=
[k]
(]
= 1000 - .
o
10° 10" 1 10
Freguency (rad/min)

Frequency Response for the Second Input-Output Path

In both plots, the phase rolls off rapidly, which suggests a time delay for both

input/output combinations.

Tip When your data contains multiple inputs and outputs, press Enter to
view the next input/output pair.

6-19

6 Tutorial - Identifying Linear Models Using the Command Line

6-20

Estimating the Step Response

To estimate the step response from the data, use the step command with the
following arguments:

step(ze,30)

The first step argument is the name of the data object. The second argument
is the duration of the step input in the time units you specified (minutes).

This calculation produces the following plot.

el JRT=TE
File Edit ‘Wew Insert Tools Desktop Windu:uleeIp k"
N E&| L RQm®|E|0E|=O
From ConsumptionHate From Current
4 12
358}
10+ 1
3 L
25} : af 1
o
E
5 B -
T 15¢
=]
= 4 A l
(]
T o5} . 5l |
|:| L
D L]
05+
2 s . =) : 3
-20 1] 20 40 -20 1] 20 40
Tirme {min) Tirme (min)

Step Response from Both Inputs to the Output

The step response for the first input/output combination suggests an
overshoot, which indicates the presence of an underdamped mode (complex
poles) in the physical system.

Estimating Step- and Frequency-Response Models

The step response from the second input to the output shows no overshoot,
which indicates either a first-order response or a higher-order response with
real poles (overdamped response).

The step-response plot indicates a nonzero delay in the system, which is

consistent with the rapid phase roll-off you got in the Bode plot you created
in “Estimating the Step Response” on page 6-20.

6-21

6 Tutorial - Identifying Linear Models Using the Command Line

Estimating Delays in the Multiple-Input System

In this section...

“Why Estimate Delays?” on page 6-22
“Estimating Delays Using the ARX Model Structure” on page 6-22

“Estimating Delays Using Alternative Methods” on page 6-23

Why Estimate Delays?

To identify parametric black-box models, you must specify the input/output
delay as part of the model order.

If you do not know the input/output delays for your system from the
experiment, you can use the System Identification Toolbox™ software to
estimate the delay.

Estimating Delays Using the ARX Model Structure

In the case of single-input systems, you can read the delay on the
impulse-response plot. However, in the case of multiple-input systems, such
as the one in this tutorial, you might be unable to tell which input caused the
initial change in the output and you can use the delayest command instead.

The delayest command estimates the time delay in a dynamic system by

estimating a low-order, discrete-time ARX model with a range of delays, and
then choosing the delay that corresponding to the best fit.

6-22

Estimating Delays in the Multiple-Input System

The ARX model structure is one of the simplest black-box parametric
structures. In discrete-time, the ARX structure is a difference equation with
the following form:

y®+a1yE-D+...+a,,yEt—n,) =
biu(t —ng)+...+ b, u(t —np —ng + 1) +e(?)

y(t) represents the output at time ¢, u(#) represents the input at time ¢, n is
the number of poles, 7, is the number of b parameters (equal to the number of
zeros plus 1), n, is the delay (the number of samples before the input affects
output of the system), and e(?) is the white-noise disturbance.

delayest assumes that n =n,=2 and that the noise e is white or insignificant,
and estimates n,.

To estimate the delay in this system, type the following command in the
MATLAB® Command Window:

delayest(ze)

System Identification Toolbox software responds with the following:

ans =
5 10

This result includes two numbers because there are two inputs: the estimated
delay for the first input is 5 data samples, and the estimated delay for the
second input is 10 data samples. Because the sampling interval for the
experiments is 0.5 min, this corresponds to a 2.5-min delay before the first
input affects the output, and a 5.0-min delay before the second input affects
the output.

Estimating Delays Using Alternative Methods

There are two alternative methods for estimating the time delay in the system:

¢ Plot the time plot of the input and output data and read the time difference
between the first change in the input and the first change in the output.
This method is practical only for single-input/single-output system; in the

6-23

6 Tutorial - Identifying Linear Models Using the Command Line

case of multiple-input systems, you might be unable to tell which input
caused the initial change in the output.

® Plot the impulse response of the data with a 1-standard-deviation
confidence region. You can estimate the time delay using the time when the
impulse response is first outside the confidence region.

6-24

Estimating Model Orders Using an ARX Model Structure

Estimating Model Orders Using an ARX Model Structure

In this section...
“Why Estimate Model Order?” on page 6-25

“Commands for Estimating the Model Order” on page 6-25
“Model Order for the First Input-Output Combination” on page 6-27

“Model Order for the Second Input-Output Combination” on page 6-30

Why Estimate Model Order?

Model order is one or more integers that define the complexity of the model.
In general, model order is related to the number of poles, the number of zeros,
and the response delay (time in terms of the number of samples before the
output responds to the input). The specific meaning of model order depends
on the model structure.

To compute parametric black-box models, you must provide the model order
as an input. If you do not know the order of your system, you can estimate it.

After completing the steps in this section, you get the following results:

® For the first input/output combination: n, =2, n,=2, and the delay n,=5.

® For the second input/output combination: n =1, n,=1, and the delay n,=10.

Later, you explore different model structures by specifying model-order values
that are slight variations around these initial estimate.

Commands for Estimating the Model Order

In this portion of the tutorial, you use struc, arxstruc, and selstruc to
estimate and compare simple polynomial (ARX) models for a range of model
orders and delays, and select the best orders based on the quality of the model.

The following list describes the results of using each command:

® struc creates a matrix of model-order combinations for a specified range of
n, n,, and n, values.

6-25

6 Tutorial - Identifying Linear Models Using the Command Line

6-26

® arxstruc takes the output from struc, systematically estimates an
ARX model for each model order, and compares the model output to the
measured output. arxstruc returns the loss function for each model, which

is the normalized sum of squared prediction errors.

® selstruc takes the output from arxstruc and opens the ARX Model
Structure Selection window, which resembles the following figure, to help

you choose the model order.

=) ARY Model Structure Selection

File

Options

Style Help

=10l x|

Unexplained output variance in %)

1.5

0.5

Madel Misfitws number of par's

Green: MOL Choice
Blue: AIC Choice

Red: Best Fit1

[T,

Mumber of par's

a0

Murnber of par's
|15—
M= fit=0. 20056
ha=6
nk=19

nk=2

Inzert |
Close |
Help |

Click on bars ta inspect models.

Estimating Model Orders Using an ARX Model Structure

You use the preceding plot to select the best-fit model. The horizontal axis
is the total number of parameters:

Number of parameters = n, +ny

For the ARX model, n, is the number of poles, n, is the number of b
parameters (equal to the number of zeros plus 1), and n, is the delay.

The vertical axis, called Unexplained output variance (in %), is

the portion of the output not explained by the model—the ARX model
prediction error for a specific number of parameters. The prediction error
is the sum of the squares of the differences between the validation data
output and the model output.

Three rectangles are highlighted on the plot in green, blue, and red. Each
color indicates a type of best-fit criterion, as follows:

= Red — Best fit minimizes the sum of the squares of the difference
between the validation data output and the model output. This rectangle
indicates the overall best fit.

= Green — Best fit minimizes Rissanen MDL criterion.
= Blue — Best fit minimizes Akaike AIC criterion.

In this tutorial, the Unexplained output variance (in %) value remains
approximately constant for the combined number of parameters from 4 to
20. Such constancy indicates that model performance does not improve at
higher orders. Thus, low-order models might fit the data equally well.

Note When you use the same data set for estimation and validation, use
the MDL and AIC criteria to select model orders. These criteria compensate
for overfitting that results from using too many parameters.

Model Order for the First Input-Output Combination

In this tutorial, there are two inputs to the system and one output and you
estimate model orders for each input/output combination independently. You
can either estimate the delays from the two inputs simultaneously or one
input at a time.

6-27

6 Tutorial - Identifying Linear Models Using the Command Line

6-28

It makes sense to try the following order combinations for the first
input/output combination:

® n,=2:5
® n,=1:5

® n,=5

This is because the nonparametric models you estimated in “Estimating Step-
and Frequency-Response Models” on page 6-17 show that the response for the
first input/output combination might have a second-order response. Similarly,
in “Estimating Delays in the Multiple-Input System” on page 6-22, the delay
for this input/output combination was estimated to be 5.

To estimate model order for the first input/output combination:
1 Use struc to create a matrix of possible model orders.

NN1 = struc(2:5,1:5,5);

2 Use selstruc to compute the loss functions for the ARX models with the
orders in NN1.

selstruc(arxstruc(ze(:,:,1),zv(:,:,1),NN1))

Note (ze(:,:,1) selects the first input in the data.

Estimating Model Orders Using an ARX Model Structure

This command opens the interactive ARX Model Structure Selection
window.

=} ARX Model Structure Selection o Im] 1

File Options Stvle Help

Model Misfitwvs number of par's
Murnber af par's

0.5

Select |

Cloze |

0 Help |
1] 5 10 1

Mumber of par's

F 15 Blue: MOL Choice]

= Blue: AIC Chaoice E

: Red: Best Fit| | Misfi-0.86024
[n:1

= 1 1 Fig= 2
= e

= Bnln nb=3
e

= rk=5
)

[ak]

=

I

=

=

[

=

Inzpect models by clicking bars or press SELECT.

Note The Rissanen MDL and Akaike AIC criteria produces equivalent
results and are both indicated by a blue rectangle on the plot.

The red rectangle represents the best overall fit, which occurs for n =2,
n,=3, and n,=5. The height difference between the red and blue rectangles
is insignificant. Therefore, you can choose the parameter combination that
corresponds to the lowest model order and the simplest model.

6-29

6 Tutorial - Identifying Linear Models Using the Command Line

6-30

3 Click the blue rectangle, and then click Select to choose that combination
of orders:

n,=2

n,=2
n,=5

4 To continue, press any key while in the MATLAB® Command Window.

Model Order for the Second Input-Output
Combination

It makes sense to try the following order combinations for the second
input/output combination:

® n,=1:3

® n,=1:3

* n,=10

This is because the nonparametric models you estimated in “Estimating Step-
and Frequency-Response Models” on page 6-17 show that the response for the
second input/output combination might have a first-order response. Similarly,

in “Estimating Delays in the Multiple-Input System” on page 6-22, the delay
for this input/output combination was estimated to be 10.

To estimate model order for the second input/output combination:

1 Use struc to create a matrix of possible model orders.

NN2 = struc(1:3,1:3,10);

Estimating Model Orders Using an ARX Model Structure

2 Use selstruc to compute the loss functions for the ARX models with the

orders in NN2.

selstruc(arxstruc(ze(:,:,2),zv(:,:,2),NN2))

This command opens the interactive ARX Model Structure Selection

window.

<} ARZ Model Structure Selection

File Options Style

Help

=101 x|

Model Mistitvs number of par's

' Greeﬁ: MDL'Chnice

F
g 12 Red: AIC Choice]
[ak}
= Fed: Best Fit4
o
£ 0s
z i et i
[l
£ 06
(]
)
T 0
s
=0z
[ak])
=
=i
0 2 3 B

Mumber of par's

Murnker of par's
Mizfit=0.7 4176
na= 2
nb=3

k=10

Select |
Cloze |
Help |

Inzpect models by clicking bars or press SELECT.

Note The Akaike AIC and the overall best fit criteria produces equivalent
results. Both are indicated by the same red rectangle on the plot.

The height difference between all of the rectangles is insignificant and
all of these model orders result in similar model performance. Therefore,
you can choose the parameter combination that corresponds to the lowest

model order and the simplest model.

3 Click the yellow rectangle on the far left, and then click Select to choose

the lowest order: n =1, n,=1, and n,=10.

6-31

6 Tutorial - Identifying Linear Models Using the Command Line

4 To continue, press any key while in the MATLAB Command Window.

6-32

Estimating Continuous-Time Transfer Functions (Process Models)

Estimating Continuous-Time Transfer Functions (Process

Models)

In this section...

“Specifying the Structure of the Process Model” on page 6-33
“Viewing the Model Structure and Parameter Values” on page 6-34
“Specifying Initial Guesses for Time Delays” on page 6-35
“Estimating Model Parameters Using pem” on page 6-36
“Validating the Process Model” on page 6-37

“Refining the Process Model by Including a Noise Model” on page 6-40

Specifying the Structure of the Process Model

In this portion of the tutorial, you estimate a low-order, continuous-time
transfer function (process model). the System Identification Toolbox™ product
supports continuous-time models with at most three poles (which might
contain underdamped poles), one zero, a delay element, and an integrator.

You must have already prepared your data, as described in “Preparing Data”
on page 6-5.

You can use the following results of estimated model orders to specify the
orders of the model:
¢ For the first input/output combination, use:

= Two poles, corresponding to n,=2 in the ARX model.

= Delay of 5, corresponding to n,=5 samples (or 2.5 minutes) in the ARX
model.

® For the second input/output combination, use:
= One pole, corresponding to n,=1 in the ARX model.

= Delay of 10, corresponding to n,=10 samples (or 5 minutes) in the ARX
model.

6-33

6 Tutorial - Identifying Linear Models Using the Command Line

6-34

Note Because there is no relationship between the number of zeros estimated
by the discrete-time ARX model and its continuous-time counterpart, you

do not have an estimate for the number of zeros. In this tutorial, you can
specify one zero for the first input/output combination, and no zero for the
second-output combination.

Use the idproc command to create two model structures, one for each
input/output combination:

midprocO = idproc({'P2zZUD', 'P1D'});

The argument of idproc is a cell array that contains two strings, where each
string specifies the model structure for each input/output combination:

® 'P2ZUD' represents a transfer function with two poles (P2), one zero (2),
underdamped (complex-conjugate) poles (U) and a delay (D).

® 'P1D' represents a transfer function with one pole (P1) and a delay (D).

Viewing the Model Structure and Parameter Values

To view the two resulting models, type the following command in the
MATLAB® Command Window:

midprocO

Estimating Continuous-Time Transfer Functions (Process Models)

MATLAB computes the following output:

Process model with 2 inputs: y = G_1(s)u_1 + G_2(s)u_2

where
1+Tz*s
G 1(s) =K * -----mmmmmmmmaa oo - * exp(-Td*s)
1+2*Zeta*Tw*s+ (Tw*s) "2
with K = NaN
Tw = NaN
Zeta = NaN
Td = NaN
Tz = NaN
K
G 2(s) = ---------- * exp(-Td*s)
1+Tp1*s
with K = NaN
Tp1 = NaN
Td = NaN

This model was not estimated from data.

The parameter values are set to NaN because they are not yet estimated.

Specifying Initial Guesses for Time Delays

Set the time delay property of the model object to 2.5 min and 5 min for each
input/output pair as initial guesses:

midproc0.Td = [2.5 5];

Note When setting the Td model property, you must specify the delays in
terms of actual time units (minutes, in this case) and not the number of
samples.

6-35

6 Tutorial - Identifying Linear Models Using the Command Line

6-36

Estimating Model Parameters Using pem

pem is an iterative estimation command, which means that it uses an iterative
nonlinear least-squares algorithm to minimize a cost function. The cost
function is the weighted sum of the squares of the errors.

Depending on its arguments, pem estimates different black-box polynomial
models. You can use pem, for example, to estimate parameters for linear
continuous-time transfer-function, state-space, or polynomial model
structures. To use pem, you must provide a model structure with unknown
parameters and the estimation data as input arguments.

For this portion of the tutorial, you must have already defined the model
structure, as described in “Specifying the Structure of the Process Model” on
page 6-33. Use midprocO as the model structure and Ze1 as the estimation
data:

midproc = pem(Zel,midprocO);
present (midproc)

Estimating Continuous-Time Transfer Functions (Process Models)

MATLAB estimates the following parameters:

Process model with 2 inputs: y = G_1(s)u_1 + G_2(s)u_2
where

G_1(s) =K * ----mmmmmm e - * exp(-Td*s)
1+2*Zeta*Tw*s+ (Tw*s) "2

with K = 0.12845

Tw = 0.70079
Zeta = 17.876
Td = 2.4739
Tz = 477.14
K
G 2(S) = ---------- * exp(-Td*s)
1+Tp1*s
with K =10.418
Tp1 = 2.1116
Td = 4.8864

Estimated using PEM from data set Zet
Loss function 6.2021 and FPE 6.30214

Unlike discrete-time polynomial models, continuous-time models let you
estimate the delays. In this case, the estimated delay values 2.4739 and
4.8864 are different from the initial guesses you specified of 2.5 and 5,
respectively.

To learn more about estimating models, see the corresponding section in the
System Identification Toolbox documentation.

Validating the Process Model

In this portion of the tutorial, you create a plot that compares the actual
output and the model output using the compare command

compare(Zvi,midproc)

6-37

6 Tutorial - Identifying Linear Models Using the Command Line

 Figure 1 =]

File Edit Miew Insert Tools Desktop Widu:uw Help u
NeEdS K RQAMe | €| 0B O

ProductionRate. Measured and simulated outputs

30

A

20¢

¥y [rrgdmmin]

vl measured
midprac; fit: B5.6% | T

100 200 300 400 s00
Time [min]

The preceding plot shows that the model output reasonably agrees with the
measured output: there is an agreement of 65.6% between the model and the
validation data.

Use resid to perform residual analysis:

resid(Zvi,midprocO0)

6-38

Estimating Continuous-Time Transfer Functions (Process Models)

Because the sample system has two inputs, there are two cross-correlation
plots of the residuals with each input, as shown in the following figure.

-loix
File Edit Yiew Insert Tools Desktop ‘Window Help]
DeEE K |&RaM® (¢ 08| 8O
Correlation function of residuals. Qutput ProductionRate
1 T T T T
o
0sr | o 4
To
D I e Ve B A ET e (7 M T (4] ¢'
s 1 1 1 1
0 5 10 15 20 25
lag
Crass carr. function between input ConsumptionRate and residuals fram output ProductionRate
I:|2 T T T T T T T T T
i et et
1 - .
_D2 1 | | | 1 | | 1 |
-25 -20 -5 -0 5] & 10 15 20 25
lag

Autocorrelation and Cross-Correlations of Residuals with the First Input

6-39

6 Tutorial - Identifying Linear Models Using the Command Line

6-40

After MATLAB displays the first plot, press Enter to view the
cross-correlation with the second input, as shown in the following figure.

-loix]
File Edit Yiew Insert Tools Desktop ‘Window Help]
DeE& haam? (@ 08| 1O
Cross corr. function between input Current and residuals from output ProductionRate
0.1F B
0
o1k 4
_02 1 1 Il 1 1 1 Il 1 1
25 20 15 10 5 0 5 10 15 20 25
lag
1 =
0.5
D 1 Il Il Il 1 Il Il 1 Il 1|
] 0.1 02z 03 04 05 06 07 08 08 1

Cross-Correlations of Residuals with the Second Input

In the preceding figure, the autocorrelation plot shows values outside the
confidence region and indicates that the residuals are correlated. However,
the cross-correlation with each of the two inputs shows no significant
correlation. This lack of correlation indicates that this model is accurate, but
that there might be a need for a noise model.

Refining the Process Model by Including a Noise
Model

In “Validating the Process Model” on page 6-37, you noticed that the model
performed well except that it produced correlated residuals. This correlation

Estimating Continuous-Time Transfer Functions (Process Models)

of residuals indicates evidence of unmodeled dynamics, which might be
entering the system as an external disturbance.

This portion of the tutorial shows how you can improve the process model by
including a noise model in the estimation.

Use the following command to specify a first-order ARMA noise:

midproc2 = pem(Zel,midprocO, 'DisturbanceModel’, 'armai')

Note You can type 'dist' instead of 'DisturbanceModel'. Property names
are not case sensitive, and you only need to include the portion of the name
that uniquely identifies the property.

Compare the new model to the old model and to the measured data, and
perform residual analysis, as follows:

compare(Zv1i,midproc,midproc2)

figure
resid(Zv1,midproc2)

6-41

6 Tutorial - Identifying Linear Models Using the Command Line

6-42

The following plot shows that the model output maintains reasonable
agreement with the validation-data output. Press Enter to view the
cross-correlation of the residuals with the second input.

=T

File Edit Wiew Insert Tools Desktop Window Help u
NEEHS haama| € 0B =0

FroductionRate. Measured and simulated outputs

30 ¢ .
At
il !
20r

15)

¥y [rngfmin]

\ JM Al measured
] i midprac; fit: B5.6%

| 1
- |l : midprocZ; fit: 63.69%

50 100 150 200 250 300 350 400 450 500
Tirme [min]

Estimating Continuous-Time Transfer Functions (Process Models)

The next plot shows that adding a noise model produces uncorrelated
residuals: the top set of axes show that the autocorrelation values are inside
the confidence bounds. This indicates a more accurate model.

ErTTE i8]

File Edit Yiew Insert Tools Desktop ‘Window Help N

eS| hRAM|(E|0B| 8O

Correlation function of residuals. Qutput ProductionRate

1'::‘ T T T T
0.5+ .
D LW T b) (4] & (4] Lwr) - [— it Ht oy r‘l‘\
05 1 1 1 1
1] & 10 15 20 25
lag
Cross corr. function between input ConsumptionRate and residuals from output ProductionRate
0.1 T T T T T T T T T
[Tt O ey AL i)
*zesrma Tl T '
o[P9 Tog i P i PG
Vi &)&Xg
-0.05F .
_D1 1 1 1 1 1 L L 1 1
25 200 15 -0 5 0 5 10 15 20 25

6-43

6 Tutorial - Identifying Linear Models Using the Command Line

6-44

Estimating Black-Box Polynomial Models

In this section...

“Model Orders for Estimating Polynomial Models” on page 6-44
“Estimating a Linear ARX Model” on page 6-45
“Estimating a State-Space Model” on page 6-48
“Estimating a Box-Jenkins Model” on page 6-51

“Comparing Models” on page 6-53

Model Orders for Estimating Polynomial Models

In this portion of the tutorial, you estimate several different types of
black-box, input-output polynomial models.

You must have already prepared your data, as described in “Preparing Data”
on page 6-5.

You can use the following previous results of estimated model orders to specify
the orders of the polynomial model:
¢ For the first input/output combination, use:

= Two poles, corresponding to n,=2 in the ARX model.

= One zero, corresponding to n,=2 in the ARX model.

= Delay of 5, corresponding to n,=5 samples (or 2.5 minutes) in the ARX
model.

¢ For the second input/output combination, use:
= One pole, corresponding to n,=1 in the ARX model.
= No zeros, corresponding to n,=1 in the ARX model.

= Delay of 10, corresponding to n,=10 samples (or 5 minutes) in the ARX
model.

Estimating Black-Box Polynomial Models

Estimating a Linear ARX Model

e “About ARX Models” on page 6-45

e “Estimating ARX Models Using arx” on page 6-45
e “Accessing Model Data” on page 6-47

¢ “Learn More” on page 6-48

About ARX Models
For a single-input/single-output system (SISO), the ARX model structure is:

yB+ayt-D+...+a,,yEt—n,) =
biu(t —ng)+...+ b, u(t —np —ng +1) +e(?)

y(t) represents the output at time ¢, u(¢) represents the input at time ¢, n_ is
the number of poles, n, is the number of zeros plus 1, n, is the number of
samples before the input affects the system output, and e(?) is the white-noise
disturbance.

The ARX model structure does not distinguish between the poles for
individual input/output paths: dividing the ARX equation by A, which
contains the poles, shows that A appears in the denominator for both inputs.
Therefore, you can set n, to the sum of the poles for each input/output pair,
which is equal to 3 in this case.

The System Identification Toolbox™ product estimates the parameters

ai ...a, and by...b, using the data and the model orders you specify.

Estimating ARX Models Using arx

Use arx to compute the polynomial coefficients using the fast, noniterative
method arx:

marx = arx(Zei,'na',3,'nb',[2 1],'nk',[5 10]1);
present(marx) % Displays model parameters

6-45

6 Tutorial - Identifying Linear Models Using the Command Line

6-46

MATLAB® estimates the polynomials A, B1, and B2:

Discrete-time IDPOLY model: A(q)y(t) = B(q)u(t) + e(t)
A(q) =1 - 1.027 (+-0.02917) q~-1

+ 0.1675 (+-0.04214) q~-2

+ 0.01307 (+-0.02591) q~-3

1.86 (+-0.1896) gq~-5 - 1.608 (+-0.1894) gq~-6
1.612 (+-0.07417) g~-10

B1(q)
B2(q)

The uncertainty for each of the model parameters is computed to 1 standard
deviation and appears in parentheses next to each parameter value.

Tip Alternatively, you can use the following shorthand syntax and specify
model orders as a single vector:

marx = arx(Ze1,[3 2 1 5 10])

Estimating Black-Box Polynomial Models

Accessing Model Data

The model you estimated, marx, is a discrete-time idpoly object. To get the
properties of this model object, you can use the get function:

get(marx)
a: [1

-0.9861 0.1512 0.0095]
b:
C:
d:
f:

da:
db:
dc:
dd:
df:
na:
nb:
nec:
nd:
nf:
nk:
InitialState:
Name:

Ts:

InputName:
InputUnit:
OQutputName:
OQutputUnit:
TimeUnit:
ParameterVector:
PName:

CovarianceMatrix:

NoiseVariance:
InputDelay:
Algorithm:
EstimationInfo:
Notes:
UserData:

[2x11 double]
1

1

[2x1 double]
[0 0.0301 0.0424 0.0261]
[2x11 double]
0

0

[2x1 double]
3

[2 1]

0

0

[0 0]

[5 10]

"Auto’

0.5000

{2x1 cell}
{2x1 cell}
{'ProductionRate'}
{'mg/min"'}
‘min'

[6x1 double]
{}

[6x6 double]
2.7732

[2x1 double]
[1x1 struct]
[1x1 struct]
{}

[]

6-47

6 Tutorial - Identifying Linear Models Using the Command Line

6-48

You can access the information stored by these properties using dot notation.
For example, you can compute the discrete poles of the model by finding the
roots of the A polynomial:

marx_poles=roots(marx.a)

marx_poles =

0.7751
0.2585
-0.0475

In this case, you access the A polynomial using marx.a.

The model marx describes system dynamics using three discrete poles.

Tip You can also use the zpkdata command to compute the poles of a model
directly.

Learn More

To learn more about estimating polynomial models, see the corresponding
sections in the System Identification Toolbox User’s Guide.

For more information about accessing model data, see the topic on extracting

numerical data from linear models in the System Identification Toolbox User’s
Guide.

Estimating a State-Space Model

® “About State-Space Models” on page 6-49
e “Estimating State-Space Models Using n4sid” on page 6-49

® “Learn More” on page 6-51

Estimating Black-Box Polynomial Models

About State-Space Models

The general state-space model structure is:

x(t+1) = Ax(¢) + Bu(t) + Ke(?)
y(t) = Cx(t) + Du(t) + e(¢)

y(t) represents the output at time ¢, u(z) represents the input at time ¢, x(z) is
the state values at time ¢, and e(?) is the white-noise disturbance.

You must specify a single integer as the model order to estimate a state-space
model. By default, the delay equals 1.

The System Identification Toolbox product estimates the state-space matrices
A, B, C, D, and K using the model order and the data you specify.

The state-space model structure is a good choice for quick estimation because
it contains only two parameters: n is the number of poles (the size of the A
matrix) and nk is the delay.

Estimating State-Space Models Using n4sid

Use the n4sid command to specify a range of model orders and evaluate the
performance of several state-space models (orders 2 to 8):

mn4sid = n4sid(Ze1,2:8,'nk',[5 10]);

6-49

6 Tutorial - Identifying Linear Models Using the Command Line

6-50

This command uses the fast, noniterative (subspace) method and opens the
following plot. You use this plot to decide which states provide a significant
relative contribution to the input/output behavior, and which states provide
the smallest contribution.

IR
File Edit ‘ew Insert Tools Desktop ‘Window Help
DEeEES|(KRaAaMm8|E(0
Select model arder in cormmand window.
o a—
Fed: Default Choice
iy} ar
sk}
=
e | |
=
& 3l
=
7]
s
[y)
3
'] L
|:| Lt
a 5 10 15
Model arder

The vertical axis is a relative measure of how much each state contributes to
the input/output behavior of the model (log of singular values of the covariance
matrix). The horizontal axis corresponds to the model order n. This plot
recommends n=3, indicated by a red rectangle.

To select this model order, type 3 in the MATLAB Command Window, and
press Enter.

By default, n4sid uses a free parameterization of the state-space form. To
estimate a canonical form instead, set the value of the SSParameterization
property to 'Canonical':

mCanonical = n4sid(Ze1,3,'nk',[5 10],...
'ssparameterization', 'canonical');
present(mCanonical) % Displays model properties

Estimating Black-Box Polynomial Models

Note When you examine the displayed properties, notice that the model
order is high. This high order occurs because the model uses additional states
to incorporate input delays.

Learn More

To learn more about estimating state-space models, see the corresponding
section in the System Identification Toolbox User’s Guide.

Estimating a Box-Jenkins Model

® “About Box-Jenkins Models” on page 6-51
¢ “Estimating a BJ Model Using pem” on page 6-51

e “Learn More” on page 6-53

About Box-Jenkins Models

The general Box-Jenkins (BdJ) structure is:

< B;(@) Clg)
t) = (t—nk; ——el(t
y(t) leFz(q)ul(nl)+D(q)e()

To estimate a BJ model, you need to specify the parameters n,, Ny N, Ng,
and n,.

Whereas the ARX model structure does not distinguish between the poles
for individual input/output paths, the BJ model provides more flexibility in
modeling the poles and zeros of the disturbance separately from the poles
and zeros of the system dynamics.

Estimating a BJ Model Using pem

You can use pem to estimate the BJ model. pem is an iterative method and has
the following general syntax:

pem(data, 'na',na, 'nb',nb,'nc',nc, 'nd',nd, 'nf',nf, 'nk',nk)

6-51

6 Tutorial - Identifying Linear Models Using the Command Line

In this case, data is an iddata or idfrd object, and na, nb, nc, nd, nf, and
nk specify the model order.

To estimate the BJ model, type the following command in the MATLAB
Command Window:

mbj = pem(Ze1,'nf',[2 1],'nb',[2 1],"'nc’,1,'nd", 1, 'nk’,[5 10]);
present(mbj)

This command specifies nf=2, nb=2, nk=5 for the first input, and nf=nb=1 and
nk=10 for the second input.

Tip Alternatively, you can use the following shorthand syntax that specifies
the orders as a single vector:

mbj = bj(Zet,[2 1 112 15 10]);

bj is a version of pem that specifically estimates the BJ model structure.

MATLAB estimates the following polynomial coefficients:

Discrete-time IDPOLY model:

y(t) = [B(q)/F(qg)]Ju(t) + [C(q)/D(q)le(t)

B1(q) = 1.903 (+-0.1888) gq~-5 - 1.469 (+-0.2304) g"-6

B2(q) = 2.086 (+-0.09506) q~-10

C(q) =1 + 0.1149 (+-0.04131) g~-1

D(q) =1 - 0.7364 (+-0.02856) gq~-1

F1(q) 1 - 1.361 (+-0.06205) gq~-1 + 0.5982 (+-0.05408) gq"-2
F2(q) 1 - 0.8031 (+-0.009455) q"-1

The uncertainty for each of the model parameters is computed to 1 standard
deviation and appears in parentheses next to each parameter value.

The polynomials C and D give the numerator and the denominator of the
noise model, respectively.

6-52

Estimating Black-Box Polynomial Models

Learn More

To learn more about estimating BJ models, see the corresponding section in
the System Identification Toolbox User’s Guide.

Comparing Models

To compare the output of the ARX, state-space, and Box-Jenkins models with
the measured output, use the compare function:

compare(Zvi,marx,mn4sid,mbj)

compare plots the measured output in the validation data set against the
simulated output from the models. The input data from the validation data
set serves as input to the models.

6-53

6-54

6 Tutorial - Identifying Linear Models Using the Command Line

<} Figure 1
File

Edit Wigw

i [m|
Insert Tools Desktop Window Help w
NeEdS h|@a&Me || 0E 8O
ProductionRate. Measured and simulated outputs
a0 : ' ' : ' ' ' : : .
|
| l N
26+ o IEI”F I-H i T
I' |_ h ._I!.. j I____ fat L [I |,__.:_.
20+ ly ; i I ’ .l]f
= ' l | !
= 15} .
=
E
= 10 .
= 21 measured 4
marx; fit: B4 .52%
0

- mndsid; fit: B5.68%
mbj: fit: 64.25% i

50

100 150 200 250 300 350 400 450 500

Tirne [min]

Measured Output and Simulated Outputs

To perform residual analysis on the ARX model, type the following command

resid(Zv1i,marx)

Because the sample system has two inputs, there are two plots showing the
cross-correlation of the residuals with each input. Press Enter to view the

cross-correlation with the second input.

Estimating Black-Box Polynomial Models

To perform residual analysis on the state-space model, type the following
command:

resid(Zv1,mn4sid)

Finally, to perform residual analysis on the BJ model, type the following
command:

resid(Zv1i,mbj)

All three models simulate the output equally well and have uncorrelated
residuals. Therefore, choose the ARX model because it is the simplest of the
three input-output polynomial models and adequately captures the process
dynamics.

6-55

6 Tutorial - Identifying Linear Models Using the Command Line

6-56

Simulating and Predicting Model Output

In this section...

“Simulating the Model Output” on page 6-56

“Predicting the Future Output” on page 6-58

Simulating the Model Output

In this portion of the tutorial, you simulate the model output. You must
have already created the continuous-time model midproc2, as described in
“Estimating Continuous-Time Transfer Functions (Process Models)” on page
6-33.

Simulating the model output requires the following information:

¢ Input values to the model

e Initial conditions for the simulation (also called initial states)

For example, the following commands use the iddata and idinput commands
to construct an input data set, and use sim to simulate the model output:

o°

Create input for simulation

U = iddata([],idinput([200 2]),'Ts',0.5);

% Simulate the response setting initial conditions
% equal to zero

ysim_1 = sim(midproc2,U, 'InitialState', 'zero')

Carefully consider which initial conditions you use in the simulation. A
system produces different responses for different initial conditions, even when
the input data to the model is the same. If you do not specify the correct
initial states, your model response does not match the measured output

for your data. Therefore, when you use simulation to validate a model by
matching simulated response to measured response, you must estimate the
initial conditions from the measured data and use these as the initial states
of the simulation.

Simulating and Predicting Model Output

Use findstates(idmodel) to estimate the initial conditions XOest from the
data set zZv1:

XOest = findstates(midproc2,Zv1);

Next, simulate the model using the initial states estimated from the data:

ysim_2 = sim(midproc2,U, 'InitialState',X0est);

Compare the simulated and the measured output on a plot:

figure

plot([ysim_2, Zvi.y])
legend({'model output', 'measured'})
xlabel('time'), ylabel('Output')

6-57

6 Tutorial - Identifying Linear Models Using the Command Line

The comparison of simulated and measured output is displayed in the
following figure.

)rguret ~-lof x|

File Edit Miew Insert Tools Desktop Mvindow Help k-

DeHa| raams | |0E =8O

34 ' ' : .

30+ .

257 |‘ i lu fl h Il] i

TR g

2
-5-15' T
(]

model output
measured

0 200 400 GO0 200 1000
time

Predicting the Future Output

Many control-design applications require you to predict the future outputs of
a dynamic system using the past input/output data.

For example, use predict to predict the model response five steps ahead:

predict(midproc2,Zei,5)

6-58

Simulating and Predicting Model Output

The predicted output is displayed in the following figure.

) Figure 1: Model modified after last estimate o m| |

Migw Insett Tools Deskbop window Help L]

File

Edit

DEE& haaMma @ 0E =0

¥y [rngdmin]

40

35

3a

28

20

15

10

Fredicted output #1: ProductionRate

AANR N

|

a0

100 150 200 250 300 350 400 450 500
Tirme [min]

6-59

6 Tutorial - Identifying Linear Models Using the Command Line

To compare the predicted output values with the measured output values,
use the following command:

compare(Zei,midproc2,5)

The third argument of compare specifies a five-step-ahead prediction, as
shown in the following figure.

Note When you do not specify a third argument, as in “Simulating the Model
Output” on page 6-56, compare assumes an infinite prediction horizon and
simulates the model output instead.

Jrigwez =012

File Edit Yiew Inserk Tools Desktop Window Help N
D E&| L Ram®|€ 0B =0

FProductionRate. Measured and 5-step ahead predicted outputs

el measured
ridproc?; fit: 85.05%

¥, [mo/min]
=

-1D C 1 | 1 1 1 1 1 1 1 3
50 100 150 200 250 300 350 400 450 500
Tirme [min]

6-60

Simulating and Predicting Model Output

Use pe to compute the prediction error Err between the predicted output of
midproc2 and the measured output. Then, plot the error spectrum on a Bode
plot.

[Err] = pe(midproc2,2Zvi);
bode(spa(Err,[],logspace(-2,2,200)),...
‘mode', 'same', 'sd',1,'fill"')

As shown in the following figure, the prediction errors are plotted with a
1-standard-deviation confidence interval. The errors are greater at high
frequencies because of the high-frequency nature of the disturbance.

Jrgwer I [=E

File Edit Miew Insert Tools Deskbop Window Help B
(S HE L RAONS|E| 08| 8O

o Last plotted: Power spectrum for signal e@ProductionRate

Power

Frequency (rad/min)

6-61

6 Tutorial - Identifying Linear Models Using the Command Line

6-62

Tutorial — Identifying
Nonlinear Black-Box
Models Using the GUI

About This Tutorial (p. 7-2)

Preparing Data (p. 7-4)

Estimating Nonlinear ARX Models
(p. 7-9)

Estimating Hammerstein-Wiener
Models (p. 7-23)

Overview of the tutorial

for estimating nonlinear
black-box models from
single-input/single-output (SISO)
data

How to load the sample MAT-file
into the MATLAB® workspace,
create a data object, open the System
Identification Tool GUI, and import
data into the System Identification
Tool from the MATLAB workspace

How to estimate and validate
nonlinear ARX models for
single-input/single-output (SISO)
data using the System Identification
Tool GUI

How to estimate and validate
Hammerstein-Wiener models for
single-input/single-output (SISO)
data using the System Identification
Tool GUI

7 Tuiorial - Identifying Nonlinear Black-Box Models Using the GUI

About This Tutorial

In this section...

“Objectives” on page 7-2

“Sample Data” on page 7-2

Obijectives

Estimate and validate nonlinear models from single-input/single-output
(SISO) data to find the one that best represents your system dynamics.

After completing this tutorial, you will be able to accomplish the following
tasks using the System Identification Tool GUI:

¢ Import data objects from the MATLAB® workspace into the GUI.

¢ Estimate and validate nonlinear models from the data.

¢ Plot and analyze the behavior of the nonlinearities.

Sample Data

The sample data you use in this tutorial is in twotankdata.mat, which
contains SISO time-domain data for a two-tank system, shown in the
following figure.

About This Tutorial

Tank 1

Tank 2

Two-Tank System

In the two-tank system, water pours through a pipe into Tank 1, drains into
Tank 2, and leaves the system through a small hole at the bottom of Tank 2.
The measured input u(2) to the system is the voltage applied to the pump that
feeds the water into Tank 1 (in volts). The measured output y(#) is the height
of the water in the lower tank (in meters).

Based on Bernoulli’s law, which states that water flowing through a small
hole at the bottom of a tank depends nonlinearly on the level of the water in
the tank, you expect the relationship between the input and the output data
to be nonlinear.

twotankdata.mat includes 3000 samples with a sampling interval of 0.2 s.

7 Tuiorial - Identifying Nonlinear Black-Box Models Using the GUI

7-4

Preparing Data

In this section...
“Loading Data into the MATLAB® Workspace” on page 7-4

“Creating iddata Objects” on page 7-4
“Starting the System Identification Tool” on page 7-6

“Importing Data Objects into the System Identification Tool” on page 7-7

Loading Data into the MATLAB® Workspace

Load sample data in twotankdata.mat by typing the following command in
the MATLAB® Command Window:

load twotankdata

This command loads the following two variables into the MATLAB Workspace
browser:

® vy is the output data, which is the water height in Tank 2 (in meters).

¢ uis the input data, which is the voltage applied to the pump that feeds the
water into Tank 1 (in volts).

Creating iddata Objects

System Identification Toolbox™ data objects encapsulate both data values
and data properties into a single entity. You can use the System Identification
Toolbox commands to conveniently manipulate these data objects as single
entities.

You must have already loaded the sample data into the MATLAB workspace,
as described in “Loading Data into the MATLAB® Workspace” on page 7-4.

Preparing Data

Use the following commands to create two data objects, ze and zv, where ze
contains data for model estimation and zv contains data for model validation.
Ts is the sampling interval.

Ts = 0.2; % Sampling interval is 0.5 min
z = iddata(y,u,Ts);

% First 1000 samples used for estimation
ze = z(1:1000);

% Remaining samples used for validation
zv = z(1001:3000);

To view the properties of an iddata object, use the get command. For
example, type this command to get the properties of the estimation data:

get(ze)

MATLAB software returns the following data properties and values:

Domain: 'Time'
Name: []
OutputData: [1000x1 double]
y: 'Same as OutputData'’
OutputName: {'y1'}
OutputUnit: {''}
InputData: [1000x1 double]
u: 'Same as InputData’
InputName: {'ut1'}
InputUnit: {''}
Period: Inf
InterSample: 'zoh'
Ts: 0.2000
Tstart: 0.2000
SamplingInstants: [1000x0 double]
TimeUnit: "'
ExperimentName: 'Exp1’
Notes: []
UserData: []

To learn more about these properties, see the iddata reference pages.

7 Tuiorial - Identifying Nonlinear Black-Box Models Using the GUI

To modify data properties, you can use dot notation or the set command. For
example, to assign channel names and units that label plot axes, type the
following syntax in the MATLAB Command Window:

% Set time units to minutes
ze.TimeUnit = 'sec';

% Set names of input channels
ze.InputName = 'Voltage';

% Set units for input variables
ze.InputUnit = 'V';

% Set name of output channel
ze.OutputName = 'Height';

% Set unit of output channel
ze.OutputUnit = 'm';

% Set validation data properties
zv.TimeUnit = 'sec';
zv.InputName = 'Voltage';
zv.InputUnit = 'V';
zv.OutputName = 'Height';
zv.OutputUnit ‘m';

To verify that the InputName property of ze is changed, type the following
command:

ze.inputname

Tip Property names, such as InputName, are not case sensitive. You can also
abbreviate property names that start with Input or Output by substituting u
for Input and y for Output in the property name. For example, OutputUnit is
equivalent to yunit.

Starting the System Identification Tool

To open the System Identification Tool GUI, type the following command
in the MATLAB Command Window:

ident

Preparing Data

The default session name, Untitled, displays in the title bar.

<} System Identification Tool - Untitled : - 18] x|
File Options Window Help
Ilmport data - l Ilmpor‘t models - l
* Operations *
|<-- Preprocess - l
=
‘Wiorking Data
I Estimate --= - l
Data Wiews Model Yiews
To To
I~ Time: plat \Wiorkspace | |LTIViewwer | [T hode! outpot [~ Transient resp | L EE
[~ Data spectrs [~ Macdel resids [~ Freguency tesp [T Hamm-niener
[~ Frecuency. function [~ Zetos and poles
Ezxit I~ Moize spectrum
==t walidation Dats
Status line is here.

Importing Data Objects into the System Identification

Tool
You can import the data objects into the GUI from the MATLAB workspace.

You must have already created the data objects, as described in “Creating
iddata Objects” on page 7-4, and opened the GUI, as described in “Starting
the System Identification Tool” on page 7-6.

1 In the System Identification Tool GUI, select Import data > Data object.

This action opens the Import Data dialog box.

Impart data j

Impart data
Tirme domain data...
Freq. domain data. ..

Example...

7 Tuiorial - Identifying Nonlinear Black-Box Models Using the GUI

7-8

2 Enter ze in the Object field to import the estimation data. Press Enter.
This action enters the object information into the fields.

Click More to view the following additional information about this data,
including channel names and units.

3 Click Import to add the icon named ze to the System Identification Tool
GUL

4 In the Import Data dialog box, type zv in the Object field to import the
validation data. Press Enter.

5 Click Import to add the icon named zv to the System Identification Tool
GUL

6 In the Import Data dialog box, click Close.

7 In the System Identification Tool GUI, drag the ze icon to the Working
Data rectangle, and drag the zv icon to the Validation Data rectangle.

Estimating Nonlinear ARX Models

Estimating Nonlinear ARX Models

In this section...

“Estimating a Nonlinear ARX Model with Default Settings” on page 7-9

“Plotting Nonlinearity Cross-Sections for Nonlinear ARX Models” on page
7-13

“Changing the Nonlinear ARX Model Structure” on page 7-16
“Selecting a Subset of Regressors in the Nonlinear Block” on page 7-18

“Changing the Nonlinearity Estimator in a Nonlinear ARX Model” on page
7-20

“Selecting the Best Model” on page 7-21

Estimating a Nonlinear ARX Model with Default
Settings

In this portion of the tutorial, you estimate a nonlinear ARX model using
default estimation options.

You must have already prepared the data, as described in “Preparing Data”
on page 7-4.

7-9

7 Tutorial - Identifying Nonlinear Black-Box Models Using the GUI

1 In the System Identification Tool GUI, select Estimate > Nonlinear
models to open the Nonlinear Models dialog box.

+) Nonlinear Models

=10l x|

I Estimnation |

Model name: Inlarxl

Model structure: I Monlinear AR ;I

Initial mode: I <nOne = j

Regressars I Model Properties |

Inpts () Manlinear Block i

] Regressors redicte

Outputs =
RS OO | ey, ult®, w1, Hmear Ao Outputs (5)

Specify delay and number of terms in standard regressors For output Height:

Channel Mame | Delay I Mo, of Terms I Resulting Regressors
Input Channels
oltage |1 |2 |\|'0Itage(t—1)J Vaoltaget-2)
Output Channels
Height 1 2 Heightt-1), Height(t-2)

Moke: Model has no custom regressors,

Infer Input Delay... Edit Regressors, .. |

Estimate | Close | Help |

The Model Type tab is already open and the default Model Structure is
Nonlinear ARX.

In the Regressors tab, the model orders for both Input Channels and

Output Channels are specified by the Delay of 1 and No. of Terms

equal to 2. Thus, the model output y(z) is related to the input u(?) via the
following nonlinear autoregressive equation:

(&) = £ (3t~ D), y(t - 2),u(t —1),u(t - 2))

fis the nonlinearity estimator you select in the Model Properties tab.

7-10

Estimating Nonlinear ARX Models

2 Click the Model Properties tab.

The Nonlinearity represents the nonlinear function f and is already set
to Wavelet Network, by default. The number of units for the nonlinearity
estimator is set to Select automatically, which lets the algorithm search

for the best number of nonlinearity units during estimation.

3 Click Estimate.

This action adds the model nlarx1 to the System Identification Tool GUI,

as shown in the following figure.

<) System Identification Tool - ex_nlarx_data

File

Options Window Help

—lojx|

Ilmport data - l
1

Ie ¥

Data Views
I~ Time plat
[Data spectra
[Freguency function
Exit

Operations

r' v l" |<-- Preprocess vl

L)

e

‘Working Data

To To
Workspace || LTI Wiewer

Trash

Ilmport models - l

4

\

nlarxl

I~ Model output

I Model resids

e

v
Walidation Data

Model Wiews
[~ Transient resp
[~ Freguency resp
[~ Zeros and poles

I~ Moise spectrum

Model nlarx1 inzerted. Double click on icon (right mouse) for text information.

I~ Monfinear ARX
[~ Hamm-ienet

7-11

7 Tutorial - Identifying Nonlinear Black-Box Models Using the GUI

The Nonlinear Models dialog box displays the following estimation
information in the Estimation tab.

+) Nonlinear Models

=10l

Model Type Estimation |

| B Estirnation Trace |

Estimation Summary
o Fit (%) = 5729

w Estimation Report | FPE — 4.0166-005

| Loss Fcn = 3.654e-005

Estimation of Nonlinear ARX model: nlarx1
Estimation Data: 'ze' with 1000 satnples.

Algorithm Options. .. |
Model Configuration:

Regressors for nonlinear block: All regressors.

Nonlinearity: Wawelet networlk with nunber of units chosen
automatically.

Estimation Progress:

Performing estirnation with Focus = Prediction. ...
Dione

Completed in 0.187 seconds.

~Model Refinement

Last estimated model: nlar:x1

I~ Use last estimated madel as initial model For next estimation

I Randomize initial mode] before estimation

Estimate || Close I Help

Note Fit (%) is computed using the estimation data set, and not the

validation data set. However, the model output plot shows the fit to the
validation data set.

4 In the System Identification Tool GUI, select the Model output check box.
Simulation of the model output uses the input validation data as input to

the model. It plots the simulated output on top of the output validation
data.

7-12

Estimating Nonlinear ARX Models

=) Model Output: Height =10] x|
File Options Style Channel Help

Measured and simulated model autput
0.6

BestFits

Hlarat: 60.91
0.4t

0.2t

-0.2F

-0.4 - : -
200 300 400 500 60O

Tirre

The Best Fits area of the Model Output plot shows that the agreement
between the model output and the validation-data output is 60.91%.

Plotting Nonlinearity Cross-Sections for Nonlinear
ARX Models

Perform the following procedure to view the shape of the nonlinearity as a
function of regressors on a Nonlinear ARX Model plot.

7-13

7 Tutorial - Identifying Nonlinear Black-Box Models Using the GUI

7-14

1 In the System Identification Tool GUI, select the Nonlinear ARX check
box to view the nonlinearity cross-sections.

By default, the plot shows the relationship between the output regressors
Height(t-1) and Height(t-2). This plot shows a regular plane in

the following figure. Thus, the relationship between the regressors is
approximately a linear plane.

<)} Monlinear AR Model Plot [(O] x|

File Options Style Help

Select nonlinearity at output: IHeight - I il
Qutput: Height

Output:Height

L Regressar 1:
| [nlarstiwavenst | IHeigHt(T-U |

Range: 354 0.63404]

Regressor 2:

[Heightit-2) -

Ferge [354 0.63404]

Remaining regressors:

Fix values... |

Maonlin

Reg 2 05 .05 Reg 1

Estimating Nonlinear ARX Models

2 In the Nonlinear ARX Model Plot window, keep the default value for
Regressor 1 at Voltage(t-1). Set Regressor 2 to Voltage(t-2). Click

Apply.

The relationship between these regressors is nonlinear, as shown in the

following plot.

<)} Monlinear AR Model Plot [(O] x|

File Options Style Help

Select nonlinearity at output:

IHeight - I

0.31

TNOnTm

Output:Height

| [T nlarxtwavenet |

0o Reg 1

il

Qutput: Height

Regressar 1:

|Vo|tage(1.1] |

Range: [1-2 1048]

Regressor 2:

[ataget-2) -

Range: 12 10.8]

Remaining regressors:

Fix values... |

3 To rotate the nonlinearity surface, select Style > 3D Rotate and drag

the plot to a new orientation.

4 To display a 1-D cross-section for Regressor 1, set Regressor 2 to none,
and click Apply. The following figure shows the resulting nonlinearity

7-15

7 Tutorial - Identifying Nonlinear Black-Box Models Using the GUI

magnitude for Regressor 1, which represents the time-shifted voltage
signal, Voltage(t-1).

<} Monlinear AR Model Plot [[O] x|
File Cptions Style Help
Select nonlinearity at output: IHeight - I il
Outpart: Height
Output:Height |
0.297 T T : : Regrezsar 1
| nlars] wavenet | |Vn:ltage(t-1) j
0.296 7 Renge: [12 1041
Regressor 2:
0295+ B
|<none> j
o 0284+ p Range: }354 0.63404]
= |
2 Remaining regressors:
0,293 - b
Fix Yalues... |
0292+ B
0.291 B
029 1 1 1 1 1
] 2 4 B 8 10 12
Reg 1

Changing the Nonlinear ARX Model Structure

In this portion of the tutorial, you estimate a nonlinear ARX model after
modifying the default input delay and the nonlinearity settings. Typically,
you select model orders and delays by trial and error until you get a model
that produces an accurate fit to the data.

You must have already estimated the nonlinear ARX model with default
settings, as described in “Estimating a Nonlinear ARX Model with Default
Settings” on page 7-9.

1 In the Nonlinear Models dialog box, click the Model Type tab, and click
the Regressors tab.

7-16

Estimating Nonlinear ARX Models

2 For the Voltage input channel, double-click the corresponding Delay cell,
enter 3, and press Enter.

This action updates the Resulting Regressors list. The list now includes
Voltage(t-3) and Voltage(t-4), which are two terms with a minimum
input delay of three samples.

3 Click Estimate.

This action adds the model nlarx2 to the System Identification Tool
GUI and updates the Model Output window to include this model. The
Nonlinear Models dialog box displays the new estimation information in
the Estimation tab.

The Best Fits area of the Model Output window shows that the nlarx2
fit is 85.36%.

<) Model Output: Height =] &
File ©Options Style Channel Help

Measured and simulated model output

0.6

BestFits
nlarx2: 85.36
nlar: 60.91

0.4t

0.2t

-0.2 ¢

-0.4 : : :
300 300 400 500 60O

Time

4 In the Nonlinear Models dialog box, click the Model Properties tab.

5 In the Number of units in nonlinear block, select Enter, and type 6.

7-17

7 Tuiorial - Identifying Nonlinear Black-Box Models Using the GUI

6 Click Estimate.

This action adds the model nlarx3 to the System Identification Tool GUI.
It also updates the Model Output window, as shown in the following figure.

The Best Fits area of the Model Output window shows that the nlarx3
fit is 86.28%.

=} Model Dutput: Height =]
File Options Style Channel Help

Measured and simulated model autput

06
BestFits
nlarxd: 86.28
0.4t
nlarz: 8536
nlar: 60.91
02t
|:| L
-02 ¢
-0.4 L L L
200 200 400 a00 G600

Tirre

Selecting a Subset of Regressors in the Nonlinear
Block

In this portion of the tutorial, you try to improve the fit by selecting a subset
of standard regressors that enter as inputs to the nonlinear block. By default,
all standard and custom regressors are used in the nonlinear block. In this
example, you only have standard regressors.

You must have already specified the model structure, as described in
“Changing the Nonlinear ARX Model Structure” on page 7-16.

7-18

Estimating Nonlinear ARX Models

1 In the Nonlinear Models dialog box, click the Model Type tab, and click
the Regressors tab.

2 Click Edit Regressors to open the Model Regressors dialog box.

<) Model Regressors

~Regressor selection
Select how ko include regressars in the nonlinear black:

Al -

w Standard Regressors

Regressor Use in nonlinear block?
Height(t-1) Il
Heiahk(t-2) v
Walkagelt-13 Il
Wialkagelt-2 Il

| p Custom Regressors |

OF | Cancel | Apply | Help |

3 Clear the following check boxes:
¢ Height(t-2)
* Voltage(t-1)

Click OK.

This action excludes the time-shifted Height(t-2) and Voltage(t-1) from
the list of inputs to the nonlinear block.

7-19

7 Tuiorial - Identifying Nonlinear Black-Box Models Using the GUI

7-20

4 Click Estimate.

This action adds the model nlarx4 to the System Identification Tool GUI.
It also updates the Model Output window, as shown in the following figure.

The Best Fits area of the Model Output window shows that the nlarx4
fit is 86.39%, which is only a fraction of a percent improvement from the
previous fit.

<) Model Output: Height E=] E3
File ©Options Style Channel Help

Measured and simulated model output

0.6
BestFits
nlarxd: 86.349
0.4t
nlard: 86.28
nlar2: 85.36
02t
nlarl: 60.91
0
-02t
-0.4 L . L
200 300 400 a00 G600

Time

Changing the Nonlinearity Estimator in a Nonlinear
ARX Model

In this portion of the example, you improve the fit of the model estimated with
default settings, nlarx1, by changing the nonlinearity.

1 In the Nonlinear Models dialog box, click the Model Type tab.
2 In the Initial model list, select nlarx1i.

3 Click the Model Properties tab.

Estimating Nonlinear ARX Models

4 In the Nonlinearity list, select Sigmoid Network.
5 In the Number of units in nonlinear block field, type 6.
6 Click Estimate.

This action adds the model nlarx5 to the System Identification Tool GUI.
It also updates the Model Output plot, as shown in the following figure.

The Best Fits area of the Model Output window shows that the nlarx5
fit is 91.86%.

<) Model Output: Height E=] E3
File ©Options Style Channel Help

Measured and simulated model output

0.6 . .
II BestFits
M
0.4t; i E
! nlard: 86.39
| | hlan: 86.28
02t i - .
) i || nlarg2: 85.36
(= nland - 60.91
ot 4
-0.2t E
04 -) -
200 300 400 a00 00

Time

Selecting the Best Model

The best model is the simplest model that accurately describes the dynamics.
In this tutorial, the best model fit was produced in “Changing the Nonlinearity
Estimator in a Nonlinear ARX Model” on page 7-20, as shown in the following
figure.

7-21

7 Tutorial - Identifying Nonlinear Black-Box Models Using the GUI

=} Model Dutput: Height [_ O]
File Options Style Channel Help

Measured and simulated model autput
0.6

II BestFits
i
0.4t | J
' & nlard: 8639
.ll :I T

]
| I | nlarxd: 86.28
0.2y | I .
) { nlarz: 85,36
= o nland: 60,91
ol 4
-0.2 ¢ 1
-0.4 : ' :
200 300 400 500 GO0

Tirre

7-22

Estimating Hammerstein-Wiener Models

Estimating Hammerstein-Wiener Models

In this section...

“Estimating Hammerstein-Wiener Models with Default Settings” on page
7-23

“Plotting the Nonlinearities and Linear Transfer Function” on page 7-27
“Changing the Hammerstein-Wiener Model Structure” on page 7-31

“Changing the Nonlinearity Estimator in a Hammerstein-Wiener Model”
on page 7-33

“Selecting the Best Model” on page 7-35

Estimating Hammerstein-Wiener Models with Default
Settings

In this portion of the tutorial, you estimate nonlinear Hammerstein-Wiener
models using default estimation options.

You must have already prepared the data, as described in “Preparing Data”
on page 7-4.

1 In the System Identification Tool GUI, select Estimate > Nonlinear
models to open the Nonlinear Models dialog box.

2 In the Model Type tab, select Hammerstein-Wiener in the Model
Structure list.

7-23

7 Tutorial - Identifying Nonlinear Black-Box Models Using the GUI

3 Keep the defaults in the I/O Nonlinearity tab.

«) Nonlinear Models

=1 3
Madel Type | Estimation |

Model name: Inlhwl
Model structure:

Initial model: I <nOne = j

1/ Honlinearity | Linear Black |

t t
ﬁbi Input Monlinearity |—D| Linear Block }—.|Output Nonlinearﬂy}ﬂb

Hammerstein-¥Wiener model

I Channel Mames I Maonlinearity | Ma. of Units I

Input Channels

Woltage |Piecewise Linear |1E| | Initial Value. ., I
Output Channels

Height |Piecewise Linear |ID | Initial ¥alue. .. I

Estimate | Close | Help |

By default, the nonlinearity estimator is Piecewise Linear with 10 units
for Input Channels and Output Channels.

7-24

Estimating Hammerstein-Wiener Models

4 Keep the defaults in the Linear Block tab.

«) Nonlinear Models

Madel Type | Estimation |

IS[= B3

Model structure:

Model name: Inlhwl

Initial model: I <nOne =

Tj0 Monlinearity — Linear Block I

ugf) i : ity
—>| Input Monlinearity Linear Block COutput Nonlineari‘ty}—.

Linear equation: ¥, (1) = (B/F)u, (t-n,)

~Model Order
Input B Order (Zeras) F Order{Poles) Input Delay (nk)
Woltage 2
Infer Input Delay. .. |
Estimate | Close | Help |

By default, the model orders and delays of the linear output-error (OE)
model are n,=2, nf=3, and n,=1.

7-25

7 Tuiorial - Identifying Nonlinear Black-Box Models Using the GUI

5 Click Estimate.

This action adds the model nlhw1 to the System Identification Tool GUI, as
shown in the following figure.

<) System Identification Tool - ex_nlhw_data

File Options ‘Window Help

Ilmport data - l Ilmport models - l

* Operations ‘
|<-- Preprocess - l _\
ze zv 1 nlbiwl
=
ze
‘Working Data

1
I Estimate --= - l

Data Views Model Wiews
To To
[~ Time plot Workspace | (LTI Viewer | [Model output [Transient resp [Monlinear &R
[~ Data spectra I Model resids [~ Freguency resp [Hamm-iener
|~ Freguency function M‘(‘W [~ Zeros and poles
e [~ Moise spectrum

Exit
st Validation Data
Click acknowledged. Mo action invoked.

7-26

Estimating Hammerstein-Wiener Models

6 In the System Identification Tool GUI, select the Model output check box.

Simulation of the model output uses the input validation data as input to
the model. It plots the simulated output on top of the output validation
data.

The Best Fits area of the Model Output window shows that the agreement
between the model output and the validation-data output is 28.47%. Thus,
the default settings do not produce an accurate fit.

<) Model Output: Height M=l E3
File ©Options Style Channel Help

Measured and simulated model output
0y T . .

BestFits
0B 1 [nlhoel: 2847

0.4+
0.4t
0.3+
0.2+

0.1

200 300 400 a00 G600
Time

Plotting the Nonlinearities and Linear Transfer
Function

You can plot the input/output nonlinearities and the linear transfer function
of the model on a Hammerstein-Wiener plot.

7-27

7 Tutorial - Identifying Nonlinear Black-Box Models Using the GUI

1 In the System Identification Tool GUI, select the Hamm-Wiener check box
to view the Hammerstein-Wiener model plot.

The plot displays the input nonlinearity, as shown in the following figure.

) Hammerstein-Wiener Model Plot _ O}

File Options Style Help

Click on a block to view ts oot~ E

—4 UL |—-|Linear Elloc:k|—-| YrL |—>
Select nonlinearity at channel: I\-’oltage - I

0.5

ik prwdlinear

Monlinearity “alue

15 1 1 L 1 1
0 2 4 B 8 10 12

Input to nonlinearity at input ““oltage'

7-28

Estimating Hammerstein-Wiener Models

2 Click the yy;, rectangle in the top portion of the Hammerstein-Wiener
Model Plot window.

The plot updates to display the output nonlinearity.

) Hammerstein-Wiener Model Plat =] E3
File Options Style Help
[
Click on a block to view its plot: il
Select nonlinearity at channel: IHeigm - I
0.4 T T T T
| nlbwe: pwilinear
035+ A
o D3F |
=
b
= 025+ 1
=
2 02t A
=
[}
= 01at A
01F A
005 1 L 1 L
-BE00 -400 -200] 200 400
Input to nonlinearity at output ‘Height'

7-29

7 Tutorial - Identifying Nonlinear Black-Box Models Using the GUI

3 Click the Linear Block rectangle in the top portion of the
Hammerstein-Wiener Model Plot window.

The plot updates to display the step response of the linear transfer function.

) Hammerstein-Wiener Model Plot _ O}

File Options Style Help
>

Click on a block to view its plot:

_.1 Uy |—-|Linear EiIoc:k'—"| YL l—‘

Select 102 pair: IVDItage-:Heigm j Choose plat type: |Step -

To Height

1400

1200 |

1000 |

800 -

B00 -

From %aoltage

400 ¢

200 +

Time (sec)

7-30

Estimating Hammerstein-Wiener Models

4 In the Choose plot type list, select Bode. This action displays a Bode plot
of the linear transfer function, as shown in the following figure.

<) Hammerstein-Wiener Model Plot

File Options Style Help

Click on a hlock to view its plot:
—-| UL |—-|Linear Block|—-| YL |—-
Select 102 pair: IVDItage-:Heigm j Chaoose plat type:
a Frarm Yaoltage To Height
10 T :

.
Ei 3

= 10 E
=

=

1DD 1 L 1 L

= 0

i

i)

2

= -200F

i}

o

(1]

i ADD 1 1 1 1

10° 10° 10" 10° 10’ 10"
Frequency (rad/sec)

Changing the Hammerstein-Wiener Model Structure

In this portion of the tutorial, you estimate a Hammerstein-Wiener model
after modifying the default model order and the nonlinearity settings.
Typically, you select model orders and delays by trial and error until you get a
model that produces an accurate fit to the data.

You must have already estimated the Hammerstein-Wiener model with
default settings, as described in “Estimating Hammerstein-Wiener Models

with Default Settings” on page 7-23.

1 In the Nonlinear Models dialog box, click the Model Type tab, and click
the Linear Block tab.

7-31

7 Tuiorial - Identifying Nonlinear Black-Box Models Using the GUI

2 For the Voltage input channel, double-click the corresponding Input
Delay (nk) cell, type 3, and press Enter.

3 Click Estimate.

This action adds the model n1hw2 to the System Identification Tool GUI
and the Model Output window is updated to include this model, as shown
in the following figure.

The Best Fits area of the Model Output window shows that the n1hw2
fit is 62.95%.

<} Model Output: Height [_ O] x|
File Options Style Channel Help

Measured and simulated model autput
' ' ' Best Fits

Nl 62.95
nlhwel: 28.47

4 In the Nonlinear Models dialog box, select the I/O Nonlinearity tab.

5 For the Voltage input channel, double-click the corresponding No. of
Units cell, and type 20 as the number of units. Press Enter.

This action changes the number of nonlinearity units for the Piecewise
Linear nonlinearity estimator corresponding to the input channel.

7-32

Estimating Hammerstein-Wiener Models

6 Click Estimate.

This action adds the n1hw3 model to the System Identification Tool GUI. It
also updates the Model Output window, as shown in the following figure.

The Best Fits area of the Model Output window shows that the n1hw3
fit is 70.04%.

=} Model Dutput: Height [_ O]
File Options Style Channel Help

Measured and simulated model autput

0.5
BestFits

nlteed: 70.04
nlbwi2: G2 95
nlbeel: 28.47

0.4+

0.4+

0.3+

0.2

200 300 400 500 E00
Tirre

Changing the Nonlinearity Estimator in a
Hammerstein-Wiener Model

In this portion of the example, you improve the fit by changing the
nonlinearity estimator.

1 In the Nonlinear Models dialog box, click the Model Type tab, and click
the Linear Block tab.

2 For the Voltage input channel, double-click the corresponding Input
Delay (nk) cell, type 1, and press Enter.

7-33

7 Tutorial - Identifying Nonlinear Black-Box Models Using the GUI

7-34

This action restores the input delay to the default value.

3 In the Nonlinear Models dialog box, click the Model Type tab, and click
the I/O Nonlinearity tab.

4 For the Voltage input, click the Nonlinearity cell, and select Sigmoid
Network from the list, as shown in the following figure.

| Channel Mames | Monlinearity: I Mo, of Units I
Input Channels
"oltage Piecewise Linear j 0 | Initial Walue, .. I
Qutput Channels Piecewise Linear
Height 10 | Initial Walue. .. I
Saturation
Dead Zone
Wavelet Network
Mone

This action updates the corresponding No. of Units cell to 10 sigmoid
units, as shown in the following figure.

I Channel Names I Monlinearity I Mo, of Units I

Input Channels

“olbage |Sigmoid Metwork |1IJ |

Output Channels

Height |Piecewise Linear |ID | Initial Walue. ..

Estimating Hammerstein-Wiener Models

5 Click Estimate.

This action adds the model n1hw4 to the System Identification Tool GUI. It
also updates the Model Output window, as shown in the following figure.

The Best Fits area of the Model Output window shows that the n1hw4
fit is 72.01%.

=} Model Dutput: Height [_ O]
File Options Style Channel Help

Measured and simulated model autput

0.6

BestFits
nat

0.4t
03¢ it 28.47

0.2

200 300 400 500 E00
Tirre

Tip If you know that your system includes saturation or dead-zone
nonlinearities, you can specify these specialized nonlinearity estimators
in your model. Piecewise Linear and Sigmoid Network are nonlinearity
estimators for general nonlinearity approximation.

Selecting the Best Model

The best model is the simplest model that accurately describes the dynamics.

7-35

7 Tutorial - Identifying Nonlinear Black-Box Models Using the GUI

In this example, the best model fit was produced in “Changing the
Nonlinearity Estimator in a Hammerstein-Wiener Model” on page 7-33, as
shown in the following figure.

=} Model Dutput: Height [_ O]
File Options Style Channel Help

Measured and simulated model autput

0.6

BestFits
nat

0.4+
0.3+ Filkiee: 28,47

0.2

200 300 400 500 E00
Tirre

7-36

A

ARMAX
estimating using the System Identification
Tool 4-34
ARX
estimating at the command line 6-44
estimating using Quick Start 4-23

black-box models

advantages 3-7

estimating using Quick Start 4-23
Box-Jenkins models

estimating at the command line 6-44

C

comparing models
at the command line 6-53

D

data
creating iddata object 6-9
estimation versus validation 3-2
importing MAT-file into the System
Identification Tool 4-6
importing object into the System
Identification Tool 5-7
loading into the MATLAB workspace 4-5
plotting at the command line 6-6
plotting iddata object 6-6
plotting in the System Identification
Tool 4-11
preprocessing in the System Identification
Tool 4-11
delay
estimating at the command line 6-22

estimating using the System Identification
Tool 4-29
disturbance model. See noise model
dynamic system 3-2

estimation data 3-2
exporting models

to MATLAB 4-48

to the LTI Viewer 4-50

F

frequency-response models
estimating at the command line 6-17
estimating using Quick Start 4-23

G

grey-box models
advantages 3-6

iddata object
creating 6-9
plotting 6-6
importing data
iddata object into the System Identification
Tool 5-7
MAT-file into the System Identification
Tool 4-6
impulse-response models
estimating at the command line 6-17
estimating using Quick Start 4-23

L

linear models
estimating at the command line 6-3

Index-1

Index

estimating using the System Identification
Tool 4-3
versus nonlinear 3-4
loading data into the MATLAB Workspace
browser 4-5
LTI Viewer 4-50

M

model order
estimating at the command line 6-25
estimating using the System Identification
Tool 4-29
model parameters
viewing in the System Identification
Tool 4-45
models
choosing linear or nonlinear 3-4
defining structure using idproc 6-33
definition 3-2
estimating at the command line 6-3 6-33
estimating low-order continuous-time
transfer functions 5-3
estimating noise models 5-22
estimating using Quick Start 4-23
estimating using the System Identification
Tool 4-3 5-3
using 6-56

noise model 3-3

estimating for model 5-22
nonlinear models

when to estimate 3-4
nonparametric model

analyzing plots 4-23

P
plotting data

Index-2

at the command line 6-6

in the System Identification Tool 4-11
plotting models

in the LTI Viewer 4-50
prediction

at the command line 6-56
preprocessing data

in the System Identification Tool 4-11

Q

Quick Start
for estimating models 4-23
for preprocessing data 4-19

removing data sets from the System Identification
Tool 4-20
residuals
plotting using the System Identification
Tool 4-42

S

simulation
at the command line 6-56
using the Simulink software 5-30
Simulink software 5-30
state-space models
estimating at the command line 6-44
estimating using Quick Start 4-23
estimating using the System Identification
Tool 4-34
step-response models
estimating at the command line 6-17
estimating using Quick Start 4-23
System Identification Tool
estimating continuous-time models 5-3
estimating linear models 4-3
estimating models using Quick Start 4-23

Index

exporting models to MATLAB 4-48 estimating at the command line 6-17
exporting models to the LTI Viewer 4-50 estimating using Quick Start 4-23
removing data sets 4-20 trash 4-20
saving sessions 4-20
starting 2-3 4-5 U
versus command line 2-2

System Identification Toolbox product using the System Identification Toolbox
about 1-1 product 2-4
demos 1-5
documentation 1-5 \V4

related products 1-7

resources 1-9

steps for using 2-4

using with Simulink software 5-30

validating models

at the command line 6-37

using the System Identification Tool 4-38
validation data 3-2

T

transient-response models

Index-3

	toc
	About the Developers
	Product Overview
	What You Can Accomplish Using This Toolbox
	Types of Data You Can Model
	How This Toolbox Supports Identifying Dynamic Systems
	Accessing the Documentation and Demos
	Accessing Documentation
	Accessing Demos

	Related Products
	Learn More

	Using This Product
	When to Use the GUI Versus the Command Line
	Starting This Toolbox
	Steps for Using This Toolbox
	Tutorials to Help You Get Started

	Choosing Models to Estimate
	Data-Driven Modeling Using System Identification Toolbox Softwar
	When to Identify Linear Versus Nonlinear Models
	When to Identify Models from First Principles
	When to Identify Black-Box Models

	Tutorial – Identifying Linear Models Using the GUI
	About This Tutorial
	Objectives
	Sample Data

	Preparing Data
	Loading Data into the MATLAB Workspace
	Opening the System Identification Tool GUI
	Importing Data Arrays into the System Identification Tool
	Plotting and Preprocessing Data

	Saving the GUI Session
	Identifying Models Using Default Settings
	Why Identify Models Using Default Settings?
	Using Quick Start to Identify Preliminary Models
	Validating Preliminary Models
	Step-Response Plot
	Frequency-Response Plot
	Model-Output Plot

	Types of Models Generated by Quick Start

	Refining Models
	Strategy for Refining Models
	Estimating Possible Model Orders
	About ARX Models
	How to Estimate Model Orders

	Identifying State-Space and ARMAX Models
	About State-Space Models
	About ARMAX Models
	How to Estimate State-Space and ARMAX Models
	Learn More

	Choosing the Best Model
	Summary of Models
	Examining the Model Output
	Examining Model Residuals

	Viewing Model Parameters
	Viewing Model Parameter Values
	Viewing Parameter Uncertainties

	Exporting the Model to the MATLAB Workspace
	Exporting the Model to the LTI Viewer

	Tutorial – Identifying Low-Order Transfer Functions (Process Mod
	About This Tutorial
	Objectives
	Sample Data

	What Is a Continuous-Time Process Model?
	Preparing Data
	Loading Data into the MATLAB Workspace
	Opening the System Identification Tool GUI
	Importing Data Objects into the System Identification Tool
	Plotting and Preprocessing Data

	Estimating Second-Order Transfer Functions (Process Models) with
	Estimating a Second-Order Transfer Function Using Default Settin
	Tips for Specifying Known Parameters
	Validating the Model
	Examining Model Output
	Examining Model Residuals

	Refining the Model by Including a Noise Model
	Estimating Models with Modified Settings
	Comparing Models

	Viewing Model Parameters
	Viewing Model Parameter Values
	Viewing Parameter Uncertainties

	Exporting the Model to the MATLAB Workspace
	Using the System Identification Toolbox Product with the Simulin
	Preparing Input Data
	Building the Simulink Model
	Configuring Blocks and Simulation Parameters
	Running the Simulation

	Tutorial – Identifying Linear Models Using the Command Line
	About This Tutorial
	Objectives
	Sample Data

	Preparing Data
	Loading Data into the MATLAB Workspace
	Plotting the Input/Output Data
	Removing Equilibrium Values from the Data
	Using Objects to Represent Data for System Identification
	Creating iddata Objects
	Plotting the Data
	Selecting a Subset of the Data

	Estimating Step- and Frequency-Response Models
	Why Estimate Step- and Frequnecy-Response Models?
	Estimating the Frequency Response
	Estimating the Step Response

	Estimating Delays in the Multiple-Input System
	Why Estimate Delays?
	Estimating Delays Using the ARX Model Structure
	Estimating Delays Using Alternative Methods

	Estimating Model Orders Using an ARX Model Structure
	Why Estimate Model Order?
	Commands for Estimating the Model Order
	Model Order for the First Input-Output Combination
	Model Order for the Second Input-Output Combination

	Estimating Continuous-Time Transfer Functions (Process Models)
	Specifying the Structure of the Process Model
	Viewing the Model Structure and Parameter Values
	Specifying Initial Guesses for Time Delays
	Estimating Model Parameters Using pem
	Validating the Process Model
	Refining the Process Model by Including a Noise Model

	Estimating Black-Box Polynomial Models
	Model Orders for Estimating Polynomial Models
	Estimating a Linear ARX Model
	About ARX Models
	Estimating ARX Models Using arx
	Accessing Model Data
	Learn More

	Estimating a State-Space Model
	About State-Space Models
	Estimating State-Space Models Using n4sid
	Learn More

	Estimating a Box-Jenkins Model
	About Box-Jenkins Models
	Estimating a BJ Model Using pem
	Learn More

	Comparing Models

	Simulating and Predicting Model Output
	Simulating the Model Output
	Predicting the Future Output

	Tutorial – Identifying Nonlinear Black-Box Models Using the GUI
	About This Tutorial
	Objectives
	Sample Data

	Preparing Data
	Loading Data into the MATLAB Workspace
	Creating iddata Objects
	Starting the System Identification Tool
	Importing Data Objects into the System Identification Tool

	Estimating Nonlinear ARX Models
	Estimating a Nonlinear ARX Model with Default Settings
	Plotting Nonlinearity Cross-Sections for Nonlinear ARX Models
	Changing the Nonlinear ARX Model Structure
	Selecting a Subset of Regressors in the Nonlinear Block
	Changing the Nonlinearity Estimator in a Nonlinear ARX Model
	Selecting the Best Model

	Estimating Hammerstein-Wiener Models
	Estimating Hammerstein-Wiener Models with Default Settings
	Plotting the Nonlinearities and Linear Transfer Function
	Changing the Hammerstein-Wiener Model Structure
	Changing the Nonlinearity Estimator in a Hammerstein-Wiener Mode
	Selecting the Best Model

	Index

